
EELAS: Energy Efficient and Latency Aware
Scheduling of Cloud-Native ML Workloads

Ilias Syrigos⋆, Dimitris Kefalas⋆, Nikos Makris⋆† and Thanasis Korakis⋆†
⋆Dept. of Electrical and Computer Engineering, University of Thessaly, Greece

†Centre for Research and Technology Hellas, CERTH, Greece
Email: ilsirigo@uth.gr, dkefalas@uth.gr, nimakris@uth.gr, korakis@uth.gr

Abstract—The widespread use of microservices and the use
of cloud-native methodologies for the deployment of services
have increased the service providers’ flexibility and management
efficiency. As the available resources for scheduling such work-
loads have extended the boundaries of traditional datacenters to
the fog, edge, and beyond-edge, the scheduling of challenging
workloads must also account for energy efficiency, as these
devices are typically battery-powered and resource-constrained,
while maintaining acceptable performance. Specifically for ML
inference workloads, provisioning and access latency plays a cru-
cial role in their successful operation. Towards combating these
issues, we design, develop, and evaluate our platform for Energy
Efficient Latency-Aware Scheduling (EELAS) of workloads. First,
we formulate the scheduling problem as an ILP problem, and
then we develop a less complex heuristic method that allows
the efficient allocation of resources within the continuum. Our
EELAS prototype integrates with Kubernetes and is capable
of reducing the overall energy consumption of cloud-to-things
resources while accounting for latency of ML workloads. Our
evaluation in real-world settings reveals significant energy gains
for scheduling ML inference tasks, also reachable with the
minimum possible latency from far-edge devices.

Index Terms—cloud-to-things continuum, energy efficiency,
latency aware, workload scheduling, testbed

I. INTRODUCTION

Network Functions Virtualization (NFV) has emerged as
a key solution for facilitating the deployment of workloads
on any kind of underlying hardware. By decoupling the
functions of the workloads from the hardware resources, and
executing them only in software by making extended use of
Virtual Machines or the emerging microservices (e.g. dockers,
containers, Unikernels, etc.), the network edges including far
edge and fog/mist computing resources can be leveraged to
their full potential. Nevertheless, the complexity and resource
consumption of the deployed workloads is constantly rising
as they incorporate additional technological capabilities, such
as the use of Machine Learning (ML). This, in turn, provides
a complex environment for optimal deployment, as devices
closer to the network’s edge are resource-constrained and
reliant on finite batteries to operate. Therefore, scheduling such
resource-intensive workloads across the entire cloud-to-things
continuum becomes a significant challenge.

The research leading to these results has received funding from the
European Horizon 2020 Programme for research, technological development
and demonstration under Grant Agreement Number No 101008468 (H2020
SLICES-SC). The European Union and its agencies are not liable or otherwise
responsible for the contents of this document; its content reflects the view of
its authors only.

As cloud-native deployment of services and workloads
becomes the norm, several orchestrators that manage the
underlying networking fabric and deploy the workloads on
top have emerged. Such solutions include the widely adopted
Kubernetes (K8s) framework for the core cloud and the edge,
as well as the Rancher K3s platform for resource-constrained
edge and beyond edge devices [1]. As a result, none of the
existing solutions are able to simultaneously cover deploy-
ments over the entire cloud-to-things continuum, taking into
consideration aspects such as energy efficiency of the edge/far-
edge devices, communication latency, task execution delay, as
well as requested resources from the different devices.

In this paper, we tackle this problem, by appropriately
developing extensions to the scheduler of the core Kubernetes
framework, towards supporting edge and far-edge devices [2].
Through our extensions, we are able to maximize the overall
continuum energy efficiency for deployments of demanding
applications, by taking into consideration aspects such as the
latency for the deployed services, their location, and their
execution time - subject to the underlying host resources that
are different as we move from the far-edge to the core cloud.
The framework is able to deliver Energy Efficient and Latency-
Aware Scheduling (EELAS) within the resource continuum.
Our solution is tailored especially for the demanding ML
inference workloads, and involves continuous monitoring of
the available continuum resources, before concluding on the
allocation of resources. The solution is provided as a fully-
fledged framework, integrated in the K8s environment, and
extending existing APIs for orchestration. The main contribu-
tions of our work are the following:

• To formulate the allocation problem and provide a heuris-
tic solution.

• To minimize the energy consumption of the cloud-to-
things continuum when deploying workloads.

• To maximize the efficiency of ML inference tasks, subject
to their latency from the decision making process.

• To develop and evaluate our solution in a fully-fledged
framework over a real testbed setup.

We bundle our solution in a real prototype, and evaluate its
efficiency over NITOS, the Greek Node of the SLICES-RI [3].

The rest of the paper is organized as follows: Section II
provides an overview of the related literature. Section III
provides our overall system model, the scheduling problem
formulation, as well as our proposed heuristic algorithm. In
Section IV we evaluate our solution, and in Section V we
conclude our work and present some future directions.

COMSNETS 2023 Testbeds for Advanced Systems Implementation and Research (TASIR) Workshop

978-1-6654-7706-2/23/$31.00 ©2023 IEEE 819

20
23

 1
5t

h
In

te
rn

at
io

na
l C

on
fe

re
nc

e
on

 C
O

M
m

un
ic

at
io

n
Sy

st
em

s &
 N

ET
w

or
kS

 (C
O

M
SN

ET
S)

 |
 9

78
-1

-6
65

4-
77

06
-2

/2
3/

$3
1.

00
 ©

20
23

 IE
EE

 |
 D

O
I:

10
.1

10
9/

CO
M

SN
ET

S5
62

62
.2

02
3.

10
04

13
44

Authorized licensed use limited to: University of Thessaly. Downloaded on December 08,2023 at 11:15:50 UTC from IEEE Xplore. Restrictions apply.

II. RELATED WORK

Service orchestration and scheduling have received a lot
of attention since the wide application of NFV architectures.
Given the different constraints that the deployed applications
and services need to meet, scheduling is not a trivial task, as
it must simultaneously fulfill the needs of the infrastructure
provider while not violating contracted Service Level Agree-
ments (SLAs) with the end-users. Based on the fact that the
CO2 footprint of datacenters that host such workloads is not
negligible, the community has steered its efforts towards en-
ergy efficient scheduling. In [4], a classification of the different
scheduling algorithms is provided, with a large portion of them
being energy efficient methods. Authors in [5] consider solar-
powered devices and schedule workloads with the ultimate
goal of minimizing the usage of brown energy (the energy of
cloud servers) as much as possible. In [6], authors design and
evaluate workload schedulers for finding efficient mappings of
workflows into resources in order to maximize the quality of
service while reducing the energy required to compute them.

As IoT devices are constantly spreading, this creates fertile
space for the deployment of services and workloads across a
wider resource continuum, as devices are present at the fog
and edge levels. In [7], the authors consider a continuum of
resources that spans the fog and core cloud. They propose
a tree based model for scheduling workloads to the fog
nodes and the core cloud, in order to reduce the overall
energy consumption. The authors in [8] propose an energy-
efficient resource allocation algorithm for the fog computing
environment. They use ordered lists to list available resources
and schedule the workloads to the least congested, achieving
higher efficiency and balancing the load. In [9] authors con-
sider the edge as an environment complementary to the fog
and cloud and in real-time enhance the scheduling of data and
workloads across the different locations.

As in other fields [10], ML application can prove highly
beneficial for the scheduling decisions. Therefore, several
works either integrate ML in the scheduling process, or de-
velop energy efficient schedulers for ML tasks, or employ both
approaches concurrently. In [11], authors develop their scheme
for scheduling ML workloads to different servers with the goal
of enhancing the accuracy achieved by the ML tasks. In order
to accomplish this, they employ a ML scheme for the scheduler
that uses reinforcement learning for updating the scheduler
model during operation, and be able to achieve lower execution
times and greater accuracy for their workloads. Authors in [12]
use a similar approach for making their ML-based scheduler
aware of ML workloads that need to be deployed and be able
to be retrained during run-time with a reinforcement learning
approach. Finally, in [13], authors develop a scheduler aware
of possible bottlenecks in the execution of ML workloads,
eventually able to schedule/migrate tasks in order to overcome
limitations during training.

In this work, we progress beyond existing literature by
developing a scheduling algorithm for ML inference tasks that
is energy-efficient and latency-aware. This is one of the first
attempts in literature to jointly address the scheduling problem,
while considering that the inference tasks need to usually be

executed in the most efficient (quickly and energy efficient)
manner and as closer to the edge as possible. In the next
section, we formulate our problem and the relevant heuristics
for reaching the optimal solution.

III. SYSTEM MODEL

In this section, we define an optimization problem for the
energy-efficient scheduling of workloads on heterogeneous
cloud, edge, and fog devices in a cloud-to-things continuum
cluster, and then formulate it as an Integer Linear Program
(ILP). We also present a scalable, energy-efficient scheduling
algorithm based on a heuristic approach that reduces complex-
ity and scheduling time.

A. Problem Definition

We describe the problem of workload scheduling in cloud-
to-things continuum resources as follows: Given is a set of
resource nodes scattered across the continuum. We assume
that the primary factor influencing the power consumption of
such a node is the CPU power consumption, which is directly
proportional to the load of tasks that are actually executing on
the node. As such, we do not consider the power consumption
of other components, e.g., memory, storage, and fans. We are
provided with the idle and maximum power consumption in
Watts per CPU core for each node’s CPU module. We are also
provided with the Million Instructions Per Second (MIPS) of a
CPU core that can be derived through standard benchmarking
techniques. Furthermore, we are provided a set of workloads
to schedule on the continuum resources, with each workload
requiring a minimum QoS in terms of latency. This latency
refers to the time needed for the deployed workload, which
we consider to be a Machine Learning model, to respond with
an inference to a request from a user on a specific location.
This time is specified as the execution time of the ML model
for a given input, plus the Round Trip Time (RTT) for the
request or response to be transferred from or to the user. We
assume that the ML workload can be fully parallelized and
utilize several CPU cores, and that we are provided with the
total number of instructions involved in the execution of the
ML workload, which, for simplicity, is independent of the CPU
architecture and only depends on processing power.

The objective of the problem is to minimize the total energy
consumed by the nodes in the cluster. Because many fog
devices are battery-powered, this translates to longer battery
life and thus increased resource availability. However, we are
constrained by satisfying the user’s requirement for a fast
inference response with a minimum acceptable latency. So,
scheduling should also take latency into account, not just in
terms of network latency between the user and the node where
the workload is deployed, but also in terms of how long it takes
an ML model to run on a certain node.

B. Problem Formulation

The definition of the proposed ILP formulation is presented
as follows:

COMSNETS 2023 Testbeds for Advanced Systems Implementation and Research (TASIR) Workshop

820
Authorized licensed use limited to: University of Thessaly. Downloaded on December 08,2023 at 11:15:50 UTC from IEEE Xplore. Restrictions apply.

Far-edge
Edge D

evices
Fog D

evices
C

loud C
om

puting
RTT: < 5 ms

RTT: < 20 ms

RTT: > 20 ms
EELAS

La
te

nc
y

m
ea

su
re

d
fr

om
 fa

r-
ed

ge

Scheduling
Decisions

Scheduling in the continuum

Fog DevicesCloud Computing

Edge Devices

N
od

e
U

til
iz

at
io

n
an

d
en

er
gy

 c
on

su
m

pt
io

n
Fe

ed
ba

ck

Fig. 1: The overall EELAS architecture

Sets:
N Set of nodes in the cloud-to-things con-

tinuum
W Set of workloads to be deployed
Cn Set of CPU cores of node n ∈ N
L Set of locations
Parameters:
P idle
n Idle power consumption of a CPU core of

a node n ∈ N
Pmax
n Maximum power consumption of a CPU

core of a node n ∈ N
Ucn Utilization of a CPU core c ∈ Cn of a

node n ∈ N in the range of 0 to 1
IPSn Million Instructions Per Second of a CPU

core of a node n ∈ N
Iw Total number of Instructions involved in

the execution of a workload w ∈W
Latw Maximum user-required inference re-

sponse latency for a workload w ∈W
NetLatnl Network latency (RTT) between node n ∈

N and location l ∈ L

Variables:
xwn Binary variable that equals one if work-

load w ∈ W is deployed in node n ∈ N ,
zero otherwise

The objective is to minimize the total energy consumption
in the cluster, given a set of nodes N and workloads to be
deployed W .
Objective: Minimize

min
∑

n ∈ N

En (1)

The above objective function is subject to the following
constraints:

Dwn,t ≤ Latw, (2)

where the inference response delay Dwn,t of the workload w
deployed on a node n at any time slot t must be less or equal
to a minimum user-defined QoS latency value. The inference
response delay is given

Dwn,t = Twn,t +NetLatnl ∀w ∈ W, n ∈ N, l ∈ L, (3)

that equals to the delay from the execution of the ML model
w on node n at time slot t, Twn,, and the network latency
(RTT) between n and the location l of the user, NetLatnl.∑

n ∈ N

xwn ≤ 1 ∀w ∈ W (4)

∑
w ∈ W

xwn ≤Wmax ∀n ∈ N (5)

Constraint (4) limits the amount of nodes on which a
workload can be deployed to just one, as we do not consider
replication or slicing of the workload. Inequality in the con-
straint denotes the case where the workload is rejected as it
cannot satisfy the constraints, and the sum of xwn equals zero.
Additionally, constraint (5) limits the amount of workloads
that can be deployed on a single node to the maximum value
Wmax. In the case of a K8s system, the parameter Wmax is
equal to 110 workloads (pods) per node.

The execution time of a workload w on node n at the time
slot t is provided by

Twn,t = xwn
Iw

Spn,t
∀w ∈ W, n ∈ N, (6)

COMSNETS 2023 Testbeds for Advanced Systems Implementation and Research (TASIR) Workshop

821
Authorized licensed use limited to: University of Thessaly. Downloaded on December 08,2023 at 11:15:50 UTC from IEEE Xplore. Restrictions apply.

where Spn,t is the speed of the CPU on the node n at the
same time slot, and which is defined as

Spn,t = |Cn|IPSn− (7)

(
∑

c ∈ Cn

Ucn,tIPSn +
∑

w ∈ W

xwn
Iw

|Cn|IPSn
) ∀n ∈ N,

where the first term refers to the total computing capacity
of the CPU on the node n given the number of cores |Cn|
and the second to the utilization of cores by already-deployed
workloads plus the estimation for the utilization of the ones
to be deployed.

The energy consumption of a node n after the scheduling
and execution of the workloads W , can be derived by

En =
∑

w ∈ W

xwn

Twn∑
t=0

P cpu
wn,t ∀n ∈ N, (8)

that corresponds to the sum of the node’s CPU power con-
sumption for the execution of each workload w deployed on
that node. The consumption of the CPU of n for executing
workload w at the time slot t is given by

P cpu
wn,t =

∑
c ∈ Cn

P core
wcn,t ∀w ∈ W, n ∈ N, (9)

and corresponds to the total power consumption of the CPU
cores for the given workload w on node n. This, in turn, is
defined as

P core
wcn,t = (Pmax

n − P idle
n)(Ucn,t +

Iw
IPSn

) + P idle
n (10)

∀w ∈ W, c ∈ Cn, n ∈ N,

and equals to the amount of power consumed by a CPU core
c given its utilization by already-deployed workloads at time
slot t plus the estimated utilization by workload w. Even when
a CPU core is not in use, it consumes power equal to P idle

n .
As it is evident, this problem is not solved in determin-

istic time in large systems, due to its high-complexity and
a heuristic approach is necessary for providing a close-to-
optimal solution in a reasonable time.

C. Heuristic Approach
In this section, we present our algorithm for energy-efficient

scheduling with latency constraints, which is based on a greedy
heuristic approach [14]. This algorithm was developed in order
to achieve better scheduling times in large-scale clusters of
nodes, as it is quicker and has less complexity as compared
with the ILP. Each iteration begins with a random allocation,
and then attempts to improve the energy efficiency by adding
and removing nodes from the allocation until a local minimum
value is reached for that iteration. The iterations end when
there is no longer an improvement to the global minimum
value, which is the minimum of all iterations. Before proceed-
ing with the description of the algorithm, we define a metric
for the approximate estimation of the energy efficiency of each
node, EnEffIndexn, expressed in units of MIPS/Watt.

EnEffIndexn =
IPSn

Pmax
n

∀n ∈ N (11)

Algorithm 1 is the pseudocode of the proposed heuristic sched-
uler, Energy Efficient and Latency Aware Scheduler (EELAS),
that allocates resources for a batch of workloads W across a
set of cloud-to-things continuum nodes N . It takes as inputs W
and N and sorts the set of workloads W in descending order of
the number of instructions required for the execution of each
workload, Iw. It is worth noting here that we are assuming
that these values are derived from the prior application of
benchmarking techniques to each workload. Our rationale
behind the sorting is that the workloads with longest execution
times, and thus more complexity should be scheduled first,
as the shortest ones have a smaller contribution towards the
energy efficiency of the system and are therefore easier to
schedule. The outer while loop in Line 2 executes until there
is no improvement in the quality of the solution after kmax

iterations. An initial random set of nodes S consisting of as
many nodes as the number of workloads to be scheduled or
the maximum number of nodes in the cluster is generated. In
Line 4, we assign workloads to the set of nodes S and obtain
a value of energy consumption for this assignment by calling
the function EnergyAssign.

This function’s pseudocode is described by the Algorithm 2.
It takes as inputs the sets of workloads W and the set of nodes
S, with the latter sorted in descending order of EnEffIndex.
Then, for each workload w, a node s is assigned, beginning
from the most energy efficient, if the inference response delay
is less or equal to Lw. Then, the energy consumed value
for this node s is updated by adding the estimated energy
consumption caused by the execution of the workload w. If w
cannot be assigned to any of the nodes, a flag Aw indicating
the failure in allocation is returned to the calling function.
When all workloads have been assigned to a node, the total
energy consumption is then determined and returned.

The EELAS algorithm receives the energy consumption
value and keeps it as the minimum current value. It also
receives a vector A representing the success or failure of
workloads’ assignment. Then, within the repeat-until loop
it updates S by adding and removing nodes from the set of
cluster nodes N until it reaches a local energy minimum (i.e.
until Emin can no longer be decreased) that is stored in E′

min.
If Emin is less than the global energy minimum Gbalmin, then
Gbalmin is set to Emin and xwn stores the assignment of
workloads to nodes, that achieves this minimum. Then a new
random set S is generated and the outer while loop repeats.

IV. EVALUATION

For the purpose of evaluating EELAS, we have implemented
a prototype of our framework and deployed it on a realistic
testbed comprising nodes distributed along: 1) the edge, 2) the
fog, and 3) the cloud. EELAS is the orchestrator that schedules
workloads i.e., ML models for providing inference to users.

In the following part, we describe our experimental setup
and prototype’s technical information, and in subsection IV-B,
we show our experimental findings.

A. Experimental Setup
To evaluate our approach, we employ the NITOS testbed

[15], part of the SLICES-RI [3]. As illustrated in Figure 1, we

COMSNETS 2023 Testbeds for Advanced Systems Implementation and Research (TASIR) Workshop

822
Authorized licensed use limited to: University of Thessaly. Downloaded on December 08,2023 at 11:15:50 UTC from IEEE Xplore. Restrictions apply.

Algorithm 1 Energy Efficient and Latency Aware Scheduler

1: procedure EELAS(W , N)
2: while k < kmax do
3: Generate Random S
4: Esol, AW ← EnergyAssign(W,S)
5: Emin ← Esol

6: repeat
7: E′

min ← Emin

8: for n ∈ (N − S) do
9: Add n to S

10: Esol, AW ← EnergyAssign(W,S)
11: if Esol < Emin and AW = 1 then
12: Emin ← Esol

13: else
14: Remove n from S
15: end if
16: end for
17: for s ∈ S do
18: Remove s from S
19: Esol, AW ← EnergyAssign(W,S)
20: if Esol < Emin and AW = 1 then
21: Emin ← Esol

22: else
23: Add s to S
24: end if
25: end for
26: if Emin ≥ Gbalmin then
27: k ← k + 1
28: else
29: k ← 0
30: Gbalmin ← Emin

31: end if
32: until Emin ≥ E′

min

33: end while
34: end procedure

employ 3 separate nodes to represent the various nodes that
exist along the continuum: a resource-constrained, edge-based
device, a compute node for the fog network, and a piece of the
cloud infrastructure for the cloud configuration. We setup the
nodes in a K8s (version 1.18.18) cluster, which is extended
and configured to also include the edge device (Raspberry Pi
4b) and adjust the delays between the nodes to mimic a real
network configuration (the RTTs of user devices to edge are
≤ 5ms, to fog ≤ 20ms, to cloud ≥ 20ms). Our framework
was implemented by extending the default K8s scheduler with
a priority endpoint so that our heuristic approach could be
executed during workload scheduling. EELAS retrieves the
values of latency requirements, location, and current workload
instructions from the K8s YAML configuration files using
labels as described in [16].

We use an inference task of object detection from a video
file, utilizing OpenVino [17] (version 2020.3) and OpenCV
[18] (version 4.6.0) as the ML workload, and we differentiate
between the workloads by altering the resolution, and thus the
size of the video that we feed as input to the ML model. The

Algorithm 2 Energy Consumption Aware Assignment

1: procedure ENERGYASSIGN(W , S)
2: Sort S by EnEffIndex
3: for w ∈W do ▷ Outter
4: for s ∈ S do ▷ Inner
5: if Dws ≤ Lw then
6: Assign w to s
7: Es ← Es +

∑Tws

t=0 P
cpu
ws,t

8: break ▷ Both loops
9: end if

10: end for
11: if w not assigned then
12: Aw ← 0
13: end if
14: end for
15: for s ∈ S do
16: Esol ←

∑
n ∈ N En

17: end for
18: end procedure

TABLE I: Hardware specification

CPU Model Cores RAM Pmax P idle

Cloud Intel Xeon E-2176g 32 64 GB 114 W 33 W
Fog Intel Xeon Silver 4215 8 32 GB 85 W 27 W

Edge Raspberry Pi 4b 4 2 GB 6 W 4 W

execution times on different sorts of nodes for the three video
resolutions low (480p), medium (720p), and high (1080p) are
listed in the Table II.

B. Experiment Evaluation

In order to evaluate the scheduling decisions and conse-
quently the performance of EELAS, we compare our imple-
mentation to K8s’s default scheduler. We schedule two batches
of workloads in the order shown in Figure 2a. The letters
above the bars denote the node on which each workload
was scheduled: C for cloud, F for fog, and E for edge.
K8s scheduler performs best effort scheduling and places the
workloads on the fog and cloud nodes. As a result, workload
”High-1” of the first batch takes longer to execute due to the
increased utilization on that node. This is also evident by
the execution time of the similar ”High-2” workload of the
second batch, deployed on the same node, which is executed
in 40% less time. EELAS scheduler prefers to schedule low
resolution workloads on the edge node, medium on the fog
node, and high on the cloud node. As a result, we observe
that execution times in the first batch are lower on average
compared to K8s scheduler as workloads are spread across the
continuum cluster. Figures 2b, 2c depict the utilization of the
nodes’ CPUs during the experiment for the K8s and EELAS
schedulers, respectively. We can notice that the resource-
constrained Raspberry Pi reaches high utilization values even
for low-resolution workloads. Obviously, the fog node also
exhibits high utilization values with the default K8s scheduling
as most of the workloads are deployed there. Using these

COMSNETS 2023 Testbeds for Advanced Systems Implementation and Research (TASIR) Workshop

823
Authorized licensed use limited to: University of Thessaly. Downloaded on December 08,2023 at 11:15:50 UTC from IEEE Xplore. Restrictions apply.

 0

 20

 40

 60

 80

 100

Low - 1
Low - 2

Medium - 1

High - 1
Low - 3

Medium - 2

High - 2

2nd Batch

T
im

e
 (

s
)

Type of Workload

Execution Time

K8s Scheduling EELAS

F

C

F

F

F C

FE E

F

C E

F

C

(a) Execution time and allocations

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0 50 100 150 200 250

U
ti
liz

a
ti
o
n
 (

%
)

Time (s)

CPU Utilization per node with K8s default scheduler

Cloud Fog Edge

(b) Default K8s scheduling

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0 50 100 150 200 250

U
ti
liz

a
ti
o
n
 (

%
)

Time (s)

CPU Utilization per node with EELAS

Cloud Fog Edge

(c) EELAS scheduling

Fig. 2: CPU Utilization per node (Edge/Fog/Cloud) and allocation for the inference workloads

utilization values and the power consumption of each node’s
CPU from Table I, we can obtain the total energy consumed
across the cluster using Equation (8). Results show that the
deployment of workloads using the EELAS scheduler achieves
an impressive 41.8% reduction in energy consumption com-
pared to the default K8s scheduler. Moreover, the allocation
of workloads to different nodes allows them to finish their
execution in less time, thus improving the throughput for
inference requests from the users, as the network on the host
nodes is usually shared between all the different workloads.

TABLE II: Execution time for each workload on different
nodes

Edge Fog Cloud
480p 29.3s 23.2s 19.6s
720p 40.3s 33.7s 30.2s

1080p 59.7s 52.1s 47.7s

V. CONCLUSION

In this work, we designed, developed, and evaluated our
platform for Energy Efficient Latency-Aware Scheduling (EE-
LAS) of ML inference workloads. The problem of allocat-
ing the workloads in the cloud-to-things resource continuum
was formulated as an ILP, and our developed, less complex
heuristic algorithm allows us to find a near-optimal solution
in less time. The designed framework was materialized in a
testbed environment and was able to achieve an overall energy
efficiency of over 41.8% compared to the off-the-shelf K8s
scheduler. In the future, we foresee extending this work to
also cover the training tasks for the cases of federated learning
within the resource continuum, as well as deciding on possible
migrations of workloads in order to achieve higher efficiency,
as well as scaling of the deployed workloads. Moreover, we
foresee extending this work with the use of ML learning
methods for addressing dynamic profiling of the workloads
that are imminent to be deployed when submitted to the
EELAS scheduler.

REFERENCES

[1] A. Valantasis, N. Makris, and T. Korakis, “Orchestration Software for
Resource Constrained Datacenters: an Experimental Evaluation,” in 2022
IEEE 8th International Conference on Network Softwarization (NetSoft),
2022, pp. 121–126.

[2] Y. Wu, “Cloud-Edge Orchestration for the Internet of Things: Architec-
ture and AI-Powered Data Processing,” IEEE Internet of Things Journal,
vol. 8, no. 16, pp. 12 792–12 805, 2021.

[3] S. Fdida et al., “SLICES, a scientific instrument for the networking
community,” Computer Communications, vol. 193, pp. 189–203, 2022.

[4] G. L. Stavrinides and H. D. Karatza, “Scheduling data-intensive work-
loads in large-scale distributed systems: trends and challenges,” Model-
ing and simulation in HPC and cloud systems, pp. 19–43, 2018.

[5] I. De Courchelle et al., “Green energy efficient scheduling management,”
Simulation Modelling Practice and Theory, vol. 93, pp. 208–232, 2019,
modeling and Simulation of Cloud Computing and Big Data.

[6] B. Dorronsoro et al., “A hierarchical approach for energy-efficient
scheduling of large workloads in multicore distributed systems,” Sus-
tainable Computing: Informatics and Systems, vol. 4, no. 4, pp. 252–
261, 2014, special Issue on Energy Aware Resource Management and
Scheduling (EARMS).

[7] “An energy-efficient model for fog computing in the Internet of Things
(IoT),” Internet of Things, vol. 1-2, pp. 14–26, 2018.

[8] A. U. Rehman et al., “Dynamic Energy Efficient Resource Allocation
Strategy for Load Balancing in Fog Environment,” IEEE Access, vol. 8,
2020.

[9] H. A. Alharbi and M. Aldossary, “Energy-Efficient Edge-Fog-Cloud Ar-
chitecture for IoT-Based Smart Agriculture Environment,” IEEE Access,
vol. 9, 2021.

[10] I. Syrigos, N. Sakellariou, S. Keranidis, and T. Korakis, “On the
Employment of Machine Learning Techniques for Troubleshooting WiFi
Networks,” in 2019 16th IEEE Annual Consumer Communications &
Networking Conference (CCNC), 2019, pp. 1–6.

[11] H. Wang, Z. Liu, and H. Shen, “Job Scheduling for Large-Scale Machine
Learning Clusters,” in Proceedings of the 16th International Conference
on Emerging Networking EXperiments and Technologies, ser. CoNEXT
’20. Association for Computing Machinery, 2020, p. 108–120.

[12] Y. Peng et al., “DL2: A Deep Learning-Driven Scheduler for Deep
Learning Clusters,” IEEE Transactions on Parallel and Distributed
Systems, vol. 32, no. 8, pp. 1947–1960, 2021.

[13] T. Barreto Goes Perez et al., “Bottleneck-Aware Task Scheduling Based
on Per-Stage and Multi-ML Profiling,” in 2019 IEEE 21st International
Conference on High Performance Computing and Communications;
IEEE 17th International Conference on Smart City; IEEE 5th Interna-
tional Conference on Data Science and Systems (HPCC/SmartCity/DSS),
2019, pp. 510–518.

[14] P. Lindberg et al., “Comparison and analysis of eight scheduling
heuristics for the optimization of energy consumption and makespan in
large-scale distributed systems,” The Journal of Supercomputing, vol. 59,
no. 1, pp. 323–360, 2012.

[15] N. Makris et al., “Enabling Open Access to LTE Network Components;
the NITOS testbed paradigm,” in Proceedings of the 2015 1st IEEE
Conference on Network Softwarization (NetSoft), 2015, pp. 1–6.

[16] I. Syrigos, N. Angelopoulos, and T. Korakis, “Optimization of Execution
for Machine Learning Applications in the Computing Continuum,” in
2022 IEEE Conference on Standards for Communications and Network-
ing (CSCN).

[17] Y. Gorbachev et al., “Openvino deep learning workbench: Comprehen-
sive analysis and tuning of neural networks inference,” in Proceedings of
the IEEE/CVF International Conference on Computer Vision Workshops,
2019.

[18] G. Bradski and A. Kaehler, Learning OpenCV: Computer vision with
the OpenCV library. O’Reilly Media, Inc., 2008.

COMSNETS 2023 Testbeds for Advanced Systems Implementation and Research (TASIR) Workshop

824
Authorized licensed use limited to: University of Thessaly. Downloaded on December 08,2023 at 11:15:50 UTC from IEEE Xplore. Restrictions apply.

