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A B S T R A C T   

An efficient GPU implementation of the Multivariate Empirical Mode Decomposition (MEMD) method is pre-
sented for speeding up the process of decomposing non-stationary multi-channel bioelectric signals into different 
oscillation modes. Each step of the MEMD algorithm is designed with performance in mind and implemented to 
remove all unnecessary overheads caused by CPU-GPU communication, data transfer operations and synchro-
nisation. The implementation is validated with synthetic and real EEG signals of different lengths and channels 
(up to 128 channels) on different GPU cards, and compared to existing serial MEMD implementations. The final 
implementation achieved between 180x-430x speedup compared to MATLAB and a 10x improvement over the 
only known existing GPU implementation. The average decomposition error of our implementation is below 1.2 
%. Our GPU program is the fastest known GPU implementation of the MEMD algorithm that reduces execution 
time from hours to seconds and as such makes it possible to perform MEMD time-frequency analysis of high- 
density EEG (MEG) or similar multi-channel signals in a fraction of time and opens the road towards its prac-
tical applicability.   

1. Introduction 

Multivariate Empirical Mode Decomposition (MEMD) is a recently 
introduced method for analysing the spatiotemporal dynamics of 
multivariate signals [1] based on Huang’s Empirical Mode Decomposi-
tion (EMD) [2] proposed for time-frequency analysis of natural signals. 
The key difference between EMD-based and traditional time-frequency 
analysis approaches (such as FFT and Wavelet decomposition) is that 
EMD is a data-driven, adaptive method that does not rely on a set of 
predetermined basis functions, and its basis functions (Intrinsic Mode 
Functions, IMFs) are derived automatically from the data itself. 

While EMD and MEMD have been used successfully in many appli-
cation domains (e.g. geology, earthquake monitoring, astronomy, man- 
built structure monitoring, machine vibration analysis), it is especially 
suited to multi-sensor biosignal analysis. In this paper, we focus on its 
efficient use for analysing electroencephalography (EEG) data. EEG 
registers scalp potential variations generated by neural sources of the 
brain. Neuroscience research identified and confirmed that communi-
cation between different cortical areas is facilitated by oscillations [3], 
of whose amplitude and frequency may be modulated by other 

underlying processes or conditions. Consequently, accurate detection of 
ongoing oscillations is a key step in many EEG signal-processing ana-
lyses. Being the result of natural processes in the brain, EEG signals, 
however, do not satisfy the stationarity and periodicity conditions 
required for Fourier or Wavelet transform based time-frequency anal-
ysis. Moreover, these two transforms suffer from the time-frequency 
uncertainty principle, which means we cannot achieve high temporal 
and frequency resolution at the same time. In addition, these methods 
fail to uncover amplitude and frequency modulations of the extracted 
oscillatory basis functions. 

EMD presents a special opportunity for the EEG community as it can 
decompose a wide-band EEG signal into several narrow band IMFs that 
carry frequency and amplitude modulation information and provide 
instantaneous frequency and phase information at every time step [4]. 
With EMD, we may be able to extract information that previously stayed 
hidden from us during analysis, hence it can become the tool helping 
researchers to understand the mesoscopic behaviour and dynamics of 
the brain. 

Several studies used the original EMD algorithm or one of its variants 
for analysing EEG signals [5–9]. Despite promising results, there are still 
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several methodological and technical obstacles that limit the wide-
spread application of these techniques. The original EMD method is very 
sensitive to noise, hence noise-assisted extensions such as Ensemble 
Empirical Mode Decomposition (EEMD) [10] and Complete Ensemble 
Empirical Mode Decomposition with Assisted Noise (CEEMDAN) [11] 
were recommended as improvements. Unfortunately, both variants 
result in a two orders of magnitude increase in execution time. As a 
further problem, EMD and its variants are univariate methods, thus they 
decompose signals to IMFs in isolation (i.e. single electrode only). EEG, 
however, is a multivariate signal, recorded by several electrodes 
simultaneously. If a single channel EMD (or EEMD/CEEMDAN) is 
executed independently on the different signals of the multi-electrode 
EEG dataset, there is no guarantee that the same number of IMFs will 
be extracted from each signal and with identical central frequencies. 
Consequently, we will not be able to infer correct inter-electrode re-
lationships that are mandatory for spatiotemporal spectral analysis and 
brain connectivity network calculation. 

The multivariate extension (MEMD) of EMD provides the necessary 
mechanism to treat a multi-electrode EEG measurement as a multivar-
iate signal and decompose each electrode into an identical number of 
IMFs with matching central frequencies. The main drawback of this 
method is its prohibitively large execution time. To achieve practical 
usability, 2–3 orders of magnitude speedup is required, which can only 
be achieved economically with GPU accelerators. State-of-the-art GPUs 
provide massively parallel execution capabilities with exceptional effi-
ciency reaching computational peak performance up to 10–40 TFlop/s. 
We assume that GPU computing, GPU architecture and their funda-
mental programming concepts are familiar to the readers of this journal. 
For further technical details, we refer the readers to the research liter-
ature, and various other sources of programming and hardware 
documentation. 

In this paper, we describe an efficient, high-performance parallel 
CUDA implementation of the MEMD algorithm that (i) can be executed 
on NVIDIA GPUs and (ii) reduce the execution time from hours to sec-
onds. To the best of our knowledge, this is the second known MEMD GPU 
implementation, and the first one that provides publicly available source 
code1 and demonstrates exceptional performance up to 128 EEG 

channels. 
The structure of the paper is as follows. Section 2 introduces the 

Empirical Mode Decomposition, the Ensemble Empirical Mode Decom-
position and the Multivariate Empirical Mode Decomposition methods, 
followed by an overview of existing works in the parallel implementa-
tions of EMD and its variants. Section 3 describes the parallel imple-
mentation strategy for the MEMD method and provides details of the 
CUDA GPU implementation focusing on performance-oriented design. 
Section 4 presents the results of our work in terms of implementation 
accuracy, execution time, speedup and performance analysis. The paper 
ends with the Conclusions. 

2. Related work 

The frequency range of interest of EEG measurements is usually 
between 0.1 and 100 Hz. Based on historical developments and physi-
ological evidence, this frequency range is partitioned into distinct 
characteristic frequency bands, namely into the delta (1–4 Hz), theta 
(4–8 Hz), alpha (8–13 Hz), beta (13–30 Hz) and gamma (30–150 Hz) 
bands. While power changes of these bands might reveal important 
diagnostic information, to better understand the cortical processes un-
derlying the resting state and task execution mechanisms of the human 
brain, time-frequency analysis is required. 

Traditionally, the Short-Time Fourier Transform (STFFT) and the 
Continuous Wavelet Transform (CWT) using the Morlet wavelet family 
are the most widespread methods for time-frequency analysis [12]. Both 
methods assume pre-determined basis functions and rely on signal sta-
tionarity [13]. The EEG signal – as most natural signals – is non-periodic 
and non-stationary, violating our basic assumptions. In addition, the 
exact time-localization of cortical events is difficult due to the 
time-frequency uncertainty principle. 

Several new techniques have been proposed over the past two de-
cades attempting to overcome some or all of the above limitations, 
namely the synchrosqueezed Fourier [14–16], and synchrosqueezed 
wavelet transforms [17], Empirical Mode Decomposition [2], Varia-
tional Mode Decomposition[18], and Singular Spectrum Analysis [19]. 
Of these methods, Empirical Mode Decomposition and its variants are 
used most frequently in EEG research, therefore we focus here on this 
method only. 

Fig. 1. The original synthetic signal and its decomposed IMFs. Mode mixing is evident around 2–2.5 s.  

1 https://github.com/EEGLab-Pannon/MEMD-GPU 
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2.1. Empirical mode decomposition 

Empirical Mode Decomposition (EMD) is a data-driven signal 
decomposition algorithm [2] that can separate a signal into a finite 
number of so-called Intrinsic Mode Functions (IMFs) [4]. IMFs are 
narrow band signals that contain only one dominant oscillatory mode 
of the signal. The advantages of EMD over the Fourier of Wavelet 

transforms are that (i) the method can be used without a 
pre-determined set of basis functions, (ii) the extracted narrow band 
oscillatory modes (IMFs) carry amplitude and frequency modulation 
information and (iii) can be used to extract instantaneous frequency 
and phase information. The EMD algorithm has a filter-bank property 
[20] and as a result, the signal can be easily analysed in a 
multi-resolution fashion. 

The EMD algorithm automatically extracts the intrinsic mode 
functions from the signal starting with the highest frequency com-
ponents and progressing to the lower frequencies. The exact steps of 
the algorithm are listed in Algorithm 1. The first step of the decom-
position process is the detection of the extrema (minima and maxima) 
of the input signal. The extreme points are used to generate the upper 
and lower envelopes of the signal by using cubic spline interpolation. 
Next, the mean envelope is calculated from the upper and lower en-
velopes and subtracted from the original signal, creating a residual 
signal. This residual is regarded as a potential IMF. A proper IMF 
should satisfy the following two conditions; (i) the number of extreme 
points and the number of zero-crossings must be equal or the differ-
ence should not exceed one, (ii) the mean value of the mean envelope 
should be approximately zero [2]. Since these two conditions are 
difficult to satisfy simultaneously, usually the standard deviation, SD, 
between two residues is used as the stopping criterion of the sifting 
process: 

SD =
∑K

k=0

|Rk− 1(t) − Rk(t) |2

(Rk− 1(t))2 < ε  

where Rk− 1 and Rk are the final residual signal in the sifting iteration 
k − 1 and k, respectively, and ε is the sifting iteration threshold. If resi-
dues of two subsequent iterations are identical within ε, Rk will be 

regarded as a proper IMF. This IMF is then subtracted from the input 
signal to create the new input signal for the next iteration of the algo-
rithm that extracts the subsequent lower frequency IMF. The process 
stops when no further oscillatory IMFs can be extracted or the number of 
IMFs reaches a pre-set limit. 

Algorithm 1. EMD: Empirical Mode Decomposition [2]. 

Once the decomposition is complete, the original signal can be rep-
resented as: 

X(t) =
∑N

i=1
IMFi(t) +RN(t)

where RN(t) is the final residue that can be considered as the global trend 
signal. 

To illustrate the operation of the EMD algorithm we show the 
decomposition of a synthetic signal X containing five sine waves (xσ , xθ, 
xα, xβ, xγ) of frequencies representing each EEG frequency band. 
⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

xσ(t) = sin(2π ∗ 2.1 ∗ t)
xθ(t) = sin(2π ∗ 5.8 ∗ t)

xα(t) = sin(2π ∗ 11.2 ∗ t)
xβ(t) = sin(2π ∗ 18.9 ∗ t)
xγ(t) = sin(2π ∗ 40.3 ∗ t)

X(t) = xσ(t)+ xθ(t)+ xα(t)+ xβ(t)+ xγ(t)

The result of the decomposition process of a synthetic signal is shown 
in Fig. 1. The top row shows the input signal, while the other rows 
display the extracted IMFs in order of decreasing central frequency. 
Notice that IMFs 1–6 contain multiple frequencies (oscillation modes) 
within a given IMF. This phenomenon is called mode mixing caused by 
signal noise that changes the location of the signal extrema and disturb 
the decomposition process [21]. The need to solve the mode mixing 
problem has led to the development of several variants of the EMD al-
gorithm that we describe briefly in the next subsection. 
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Fig. 2. The principle of extreme point detection in a multivariate signal. (a) Two direction vectors used for projecting the multivariate signal. (b, c) The projected 
signals and their upper and lower envelopes produced along the two direction vectors. (d) The mean multivariate envelope (blue line) produced by averaging all 
multivariate upper and lower envelopes. 

Table 1 
CUDA kernels used in different stages in the MEMD GPU implementation.  

Steps in MEMD Kernel function (s) Description 

Preprocess generateHammSeq() Generate Hammersley sequence from primes 
generateDirVec() Generate direction vectors from Hammersley sequence 

Signal projection cublasSgemm() Multiply the input signal and the direction vectors 
Extrema detection findExtremaShfl() Detect the location of extreme points 

scanLargeDeviceArray() Generate index of compact vector 
scanSmallDeviceArray() Generate index of compact vector 
selectExtremaMax/Min() Generate compact extrema vector 
setBoundary() Set the boundary condition 

Cubic spline interpolation tridiagonalSetup() Generate tridiagonal system 
cusparseSgtsv2() Solve the tridiagonal system 
splineCoefficients() Generate spline coefficients for gaps 
interpolate() Generate upper and lower envelopes 

Envelopes averaging averageUppperLower() Generate multivariate mean envelope for direction vectors 
averageDirection() Generate the multivariate mean envelope of input signal 

Signal updating updateSignal() Subtract the mean envelope to generate new input signal  

Z. Wang and Z. Juhasz                                                                                                                                                                                                                        
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2.2. Improvements of the EMD algorithm 

To solve the mode mixing problem, Wu et al. [22] proposed a 
noise-assisted signal decomposition method called Ensemble Empirical 
Mode Decomposition (EEMD). This algorithm uses multiple copies 
(called realizations) of the input signal created by adding random 
Gaussian noise to the signal before the decomposition process. As a 
result, the distribution of extreme points of the signal will be more 
uniform in a statistical sense and become less sensitive to intermittent 
noise. The number of realizations in EEMD is a problem-dependent 
configuration parameter but, in general, it is in the order of few hun-
dreds. The execution flow of the EEMD method is depicted in Algorithm 
2. Compared to EMD, an additional loop is required for the realizations 
where each iteration starts with replicating the signal by adding to it 
some random white noise. Then, these signals will be decomposed 
individually as described in the EMD section. Once the IMFs for each 
noisy copy are extracted, they are averaged to generate the resultant 
final IMF set. 

Algorithm 2. EEMD: Ensemble empirical mode decomposition. 

One disadvantage of the EEMD method is that due to the added 
noise, the signal reconstructed from the IMFs is not identical to the 
original signal, slight noise will appear after the reconstruction. A so-
lution to this problem is given by the improved Complete Ensemble 
Empirical Mode Decomposition with Assisted Noise (CEEMDAN) [11]. 
We skip the details of this algorithm as it is not the focus of this paper. 

The interested readers are referred to the reference for further details. 

2.3. Multivariate empirical mode decomposition 

The EEMD and CEEMDAN algorithms provide reliable de-
compositions for single channel signals. EEG, however (just as many 
other multi-sensor application datasets), is normally not a single channel 
– univariate – signal, but obtained using a large number of electrodes 
simultaneously. If we apply EMD, EEMD or CEEMDAN on such datasets 
in a channel-by-channel fashion, different channels may produce 
different number of IMFs with potentially different central frequencies. 
This is called the mode alignment problem that can present serious 
difficulties during group level, spatiotemporal or connectivity analysis. 
The Multivariate Empirical Mode Decomposition (MEMD) proposed by 
Rehman et al. [1] provides a solution to this problem. 

In MEMD, the multi-channel signal is regarded as a multivariate 
signal in a high-dimensional space. Similarly to EMD, we still need to 
calculate the extreme points and mean envelope and perform the IMF 
sifting process, but for multivariate signals, the concept of extreme 
points is not well-defined, as the occurrence of extreme points depends 

on the projection of the signal to a particular dimension. Fig. 2 shows a 
simple example of the multivariate signal extreme point detection, in 
which we project the multivariate signal onto two different directions. 
The projected signals then are used in the extreme point detection step 
and result in two sets of upper and lower envelopes. These will be 
averaged to find the mean and subsequently the multivariate IMF. 
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Fig. 3. Computing the projected signals by matrix-matrix multiplication.  
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The use of the direction vectors and signal projection are the main 
differences between MEMD and univariate EMD variants. To achieve 
precise projections, the number of direction vectors must be as large as 
possible but at least twice the number of channels [23]. The direction 
vectors should also be uniformly distributed on a hypersphere. The 
Hammersley sequence, a low-discrepancy sequence that provides uni-
form angle sampling—also used by Rehman et al. [1]—can provide the 
proper basis for generating direction vectors with the desired properties. 

The details of the MEMD algorithm are outlined in Algorithm 3. First, 
the multivariate input signal will be projected onto the direction vectors 
and we will get the projected signal on each direction vector. Then, 
extreme point detection is performed on each projected signal, and each 
detected extreme point corresponds to a multivariate extreme point in 
the input signal, that is, a point in a high-dimensional space. The next 
step is to perform cubic spline interpolation in each dimension to create 
the upper and lower multivariate envelopes. By averaging these enve-
lopes we generate the multivariate mean envelope of the input signal. 
Finally, by subtracting the mean envelope from the input, we can obtain 
a candidate IMF. If this IMF meets the stopping criterion, the iteration 
will stop, otherwise, the candidate IMF will be used as the input signal 
for the next iteration. 

Algorithm 3. MEMD: Multivariate Empirical Mode Decomposition. 

2.4. Sequential and GPU implementations 

Increasing interest in the use of EMD-based methods over the past 
two decades have given rise to numerous implementations of Empirical 
Mode Decomposition and its variants using different programming 
languages and hardware architectures. Flandrin et al. released MATLAB 
implementation of the EMD, EEMD algorithms in 2007 and for the 
CEEMDAN algorithm in 2012 [11]. To help the work of the EEG signal 
analysis community, Al-Subari et al. developed the EMDLAB toolbox 
[24] as an extension plug-in for the EEGLAB MATLAB framework [25] 
widely used by the neuroscience community. Starting with version 
R2018a, MATLAB supports EMD calculation with the built-in emd() 

function. While MATLAB implementations are very suitable for EMD 
research and for quick integration into existing data-processing pipe-
lines, these implementations are sequential in nature and their typical 
execution time (up to several hours or days for high-density EEG data-
sets2) is not acceptable for routine, production use. libeemd [26] is a 
library written in the C programming language that provides sequential 
and OpenMP-based parallel implementation for EMD, EEMD and 
CEEMDAN that achieves around 10x speedup compared to MATLAB. 

The rapid rise of GPU technology in High Performance Computing 
gave rise to several parallel GPU-accelerated EMD implementations. 
Waskito et al. reported the first single-precision CUDA EMD imple-
mentation for audio signal processing achieving 29x and 29.9x speedups 
compared to sequential C versions on a C1060 and C2050 NVIDIA Tesla 
card, respectively [27,28]. Xie et al. created a CUDA EMD version for 
seismic data processing that achieved 4x speedup on a GT240 GPU card 
[29]. Huang et al. [30] reported 33.7x speedup on a C2050 GPU using 
overlapped piecewise cubic spline interpolation technique. 

Since Ensemble EMD has significantly higher computation cost due to 
the large number of noise assisted copies of the original signal, paral-
lelism in this case is mandatory to achieve acceptable execution times. 
Wang et al.’s implementation is developed for offline spectrum 
discrimination of hyperspectral remote sensing images and achieved 
60.62x speedup over a sequential C implementation running on an 

NVIDIA C1060 Tesla GPU card [31]. In a follow-up paper, they compare 
serial MATLAB, sequential and multi-core C as well as their CUDA 
implementation (C1060 GPU) and found that sequential C is 5 times 
faster than MATLAB, a quad-core C version is 15 times, while the CUDA 
version is 60 times faster than the MATLAB implementation [32]. Chen 

2 The execution times of the MATLAB MEMD implementation on an 8-core 
CPU (Intel Core i7–9700 K, 3.60 GHz) system were 105.7 and 399 min for 
the 64-channel 128 direction vector and 128-channel 256 direction vector cases 
(signal length: 79,872 samples), respectively. For the typical group size of 25 
subjects, these runtimes result in an overall execution time of 44 h (64 chan-
nels) and 6.9 days (128 channels). 
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et al. developed a real-time CUDA EEMD implementation [33] for 
anaesthesia monitoring purposes. They showed that it is possible to 
achieve real-time processing speed with a GTX295 GPU card (31.3x 
speedup, dual GPU card). EMD and EEMD are designed for processing 
single sensor channel data but extensions exist for multidimensional 
cases. Chang et al. developed implementation for the Multi-Dimensional 
EEMD algorithm [34] and Mujahid et al. reported the first Multivariate 
EMD GPU implementation [23] achieving 6–16x speedup over the 
MATLAB implementation. 

The common characteristics of the reviewed GPU implementations 
are that (i) they all exploit multiple levels of parallelism and use several 
GPU optimisation techniques to achieve acceptable performance gain, 
and (ii) use early generation, now outdated GPU processors and early 
versions of the CUDA programming language; (iii) the achieved speedup 
values are relatively modest, and (iv) source code is not publicly 
available. 

Fig. 5. The principle of generating compact extreme point vectors using the prefix sum operation.  

Fig. 4. The principle of extreme point detection using warp shuffle operations. Red colour marks threads performing the extrema detection steps.  

Fig. 6. Batch Multi-right-handed tridiagonal matrix equation generated by multivariate extreme points.  
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3. Methods 

Now we turn to the description of our GPU-based parallel MEMD 
implementation. As explained in Section 2.3 and show in Algorithm 3, 
the main steps of the iterative MEMD algorithm are (i) signal projection 
onto the multidimensional direction vectors, (ii) extrema detection in 
the projected signals, (iii) cubic spline interpolation to generate upper 
and lower envelope of the projected signal (iv) computation of the mean 
envelope, and (v) generating the IMF and updating the input signal for 
the next iteration. While this series of steps is inherently sequential in 
execution, there are many opportunities for parallelism in the execution 
in each step. The strategy and implementation details of our parallel 
solution is described in the rest of this section. 

3.1. Parallel design 

In our parallel implementation, each step of MEMD is implemented 
by one or more kernel functions executed on the GPU, or by highly 
optimized CUDA library functions. Essentially, the kernel function is a 
description of the thread behaviour, so by designing the kernel function, 
we can arrange independent tasks to different threads. Since the GPU 
has a large number of computing cores, threads can be executed in 
parallel. When we launch the kernel function on the CPU side, the 
threads are organized into blocks with different sizes, and the thread 
blocks are organized into grids with different sizes. The calculation steps 

of MEMD and its corresponding kernel functions are shown in Table 1. 
Threads in kernel functions need to read data from memory for 
computation, so the layout of data in memory also plays an important 
role in the parallel implementation of MEMD. The following parts are 
the details about the implementation in each step and memory layout. 

3.2. Pre-processing 

In the pre-processing stage, we perform all GPU memory allocations 
and initialisations, and generate the direction vectors used later during 
the signal projection step. As shown in Fig. 2, direction vectors are 
required in MEMD to generate multivariate signal envelopes. These 
vectors are unit vectors of a hypersphere represented by their angles. 
The more angles we have, the more uniform the distribution of the 
vectors can be provided we use suitable sampling algorithm. The 
Hammersley sequence – a low-discrepancy sequence that provides uni-
form angle sampling – was used by Rehman et al. [1] as the basis for 
generating direction vectors. We also adopted this method in our 
implementation. First, a set of prime numbers are generated on the CPU 
and copied into the GPU global memory. Next, the CUDA kernel function 
generateHammSeq() is executed with each thread performing a radical 
inverse operation [35] on one prime number from the set. This is fol-
lowed by the kernel function generateDirVec() that generates the cor-
responding direction vector on the hypersphere. Performing the GPU 
memory allocation, initialisation and generating the direction vectors is 

Table 2 
Device variables used in the GPU implementations, their size and kernels in which they are referenced.  

Variable name Dimensions Used in kernel function 

d_current SignalLength × SignalDim cublasSgemm() 
selectExtrema() 
averageDirection() 

d_directionVectors SignalDim × NumDirVector cublasSgemm() 
d_projectSignals SignalLength × NumDirVector cublasSgemm() 

findExtremaShfl() 
d_sparseFlag SignalLength × NumDirVector findExtremaShfl() 

scanLargeDeviceArray() 
scanSmallDeviceArray() 
selectExtrema() 

d_ScanResult SignalLength × NumDirVector scanLargeDeviceArray() 
scanSmallDeviceArray() 
selectExtrema() 

d_compactValue 
d_compactIndex/ 

SignalLength × SignalDim × NumDirVector selectExtremaM() 
splineCoefficients() 
interpolate() 

d_upperDia 
d_middleDia 
d_lowerDia 
d_right 

SignalLength × SignalDim × NumDirVector tridiagonalSetup() 
cusparseSgtsv2() 

d_solutionGtsv SignalLength × SignalDim × NumDirVector cusparseSgtsv2() 
splineCoefficients() 

d_b (d_upperDia) 
d_c (d_middleDia) 
d_d (d_lowerDia) 

splineCoefficients() 
interpolate() 

d_envelopeVaule interpolate() 
averageUppperLower() 

d_meanEnvelope averageUppperLower() 
averageDirection() 

d_running SignalLength × SignalDim  
d_IMFs SignalLength × SignalDim × NumIMFs   

Table 3 
Architecture parameters of the GPU platforms used for measurements.   

GTX 980 Titan Xp Tesla V100 RTX 3070 mobile 

Architecture Maxwell Pascal Volta Ampere 
CUDA cores 2048 3840 5120 5120 
Clock frequency (GHz) 1.126 1.48 1.46 1.62 
Memory (GB) 4 12 16 8 
Peak FP32 performance (TFlop/s) 4.98 11.36 14.03 16.59 
CUDA version 10.2 10.2 11.3 11.4  
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a one-time execution step, not part of the iterative process of MEMD, 
therefore it has negligible impact on the performance of the overall 
algorithm. 

3.3. Signal projection to direction vectors 

Once the direction vectors are obtained, the multivariate input signal 
must be projected onto each direction vector. The projection of one 
signal vector onto a direction vector can be represented as the dot 
product of the two vectors; consequently, the projection of a multivar-
iate input signal onto multiple direction vectors can be represented as a 
matrix-matrix multiplication operation. As shown in Fig. 3, the projec-
tion signal matrix P (SignalLength × NumDirVector) can be obtained 
after we multiply the input signal matrix S (SignalLength × SignalDim) 
and the direction vector matrix D (SignalDim × NumDirVector). 

The multivariate input signal projection operation (matrix-matrix 
multiplication) is performed by the cuBLAS library function cublasS-
gemm. The cuBLAS linear algebra library is highly optimized for NVIDIA 
GPUs and provides convenient and high-performance program in-
terfaces for vector and matrix algebra operations. The resulting pro-
jected signal matrix P is input to the subsequent extrema detection step, 
during which each projected signal (a column of P) will be used as an 
independent input signal. 

3.4. Extrema detection 

The way to detect extrema is to compare a signal value with the 
values of its two adjacent neighbours and decide whether the value is an 
extrema (maximum or minimum) or not. This operation can be per-
formed for each value in parallel by a GPU thread. This requires one 

Fig. 7. Result of the MEMD decomposition of the hexavariate dataset.  

Fig. 8. Result of the MEMD decomposition of the 16-channel dataset.  
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Fig. 9. Decomposition results of Dataset B hexavariate signal with Similarity Index values shown in bold for each component.  

Fig. 10. A section of the EEG signal (Channel 4) of the EEG sample dataset and the resulting IMFs (IMF1–8) of the GPU MEMD implementation.  
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thread to read three values then to perform the comparison. Reading the 
three values from global memory in each thread is an inefficient strategy 
for several reasons; (i) data needs to be loaded from slow memory, (ii) 
each thread needs 3 load instructions for 1 comparison, and (iii) each 
value is read multiple times as threads cover the entire input vector. A 
typical approach in CUDA programming in these situations is to use the 
on-chip shared memory that can store several input values in fast 
memory that is accessible to all threads in a thread block. This reduces 
the number of necessary load instructions and increases access speed as 
well. However, we still need three load instructions per thread, and 
performance degrading shared memory bank conflicts may also occur. 

In our parallel implementation, we used the CUDA warp level shuffle 
instructions __shfl_up_sync and __shfl_down_sync in the extrema detec-
tion kernel function findExtremaShfl. The shuffle instruction is a 
intrinsic hardware accelerated warp-level instruction that provides 
direct access to register variables of the other threads within a warp. 
(Warp is a 32-thread unit of execution in NVIDIA GPU devices.) The 
shuffle instruction removes the need for loading neighbour values from 
memory; each thread reads a single value only into a local register that 

will be accessible to the neighbour threads via the shuffle operation. As 
shown in Fig. 4, there are 32 threads in each warp, and there is an 
overlap of two threads between every two warps. Except for the first and 
last warps, each warp is designed to ignore the comparison operation for 
the first and last thread, as these valued are examined by the second last 
thread in the previous warp and the second thread in the following warp, 
respectively. Using this warp-level overlap, the detection of extreme 
points can be completed without any omission and at very high 
efficiency. 

After the detection of extreme points, we obtain the positions and 
values of all extreme points in the projection signal. These positions are 
the actual sample index values stored in a sparse vector. To make this 
vector suitable for cubic spline interpolation, we need to compact this 
position vector to a dense continuous sequence of location indexes. 

The vector compaction step is illustrated in Fig. 5. During the 
extreme point detection step, we generate an auxiliary flag vector to 
identify the location of extreme points with a logical 1 value. Subse-
quently, the kernel function scanArray will perform a prefix sum oper-
ation on the flag vector and return the prefix sum result, i.e. the 
corresponding positions of the extreme points in a compact vector. Using 
this strategy, all parallel threads in the selectExtrema kernel function 
can work independently, in parallel, using the extrema flag vector as the 
predicate, the projection signal vector and the prefix sum result vector to 
generate the compacted extreme point vector. 

Since the first and last points of the signal do not have left or right 
neighbours, respectively, it is not possible to determine whether these 
points are extrema or not. These two boundary points are handled 
separately by the kernel function setBoundary, which – in the current 
implementation – uses the slope extension method as the boundary 
condition. 

3.5. Cubic spline interpolation 

To calculate the upper and lower envelopes, we need to perform 
cubic spline interpolation based on the detected extreme points using 
the cubic spline function polynomial 

Si(x) = ai + bix+ cix2 + dix3  

With n + 1extreme points (xi,yi), there will be n gaps corresponding to n 
cubic splines, each with four unknown coefficients (a,b,c,d), resulting in 
4n unknowns that requires 4n equations. 

The detected extreme points (spline control points) satisfy the spline 

Fig. 11. Boxplot of Similarity Index values representing the difference between 
the MATLAB and GPU implementations of the MEMD algorithm. Each IMF 
category represents the distribution of the Similarity Index values of all chan-
nels for that IMF. Red lines represent median values. 

Fig. 12. Execution time of our GPU implementation compared to [23] on an NVIDIA GTX 980 GPU card. Two (a 6 and a 16-channel) datasets with 1000 samples per 
channel were used in both implementations using varying number of direction vectors. 
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function. Each extreme point must satisfy the two spline equations to its 
left and right. The first and last points only satisfy the right and left hand 
spline, respectively. As a result of these conditions, we obtain 2n equa-
tions. The next condition is continuity. The spline should be first and 
second derivative continuous at each extreme point, which condition 
will give us another 2(n − 1) equations. Now we have 4n − 2 equations, 
and we are two equations away from solving the unknowns. The last two 
missing equations are given by the boundary conditions. In our imple-
mentation, we have chosen a natural spline to interpolate on the first 
and last points, having the second derivative at the first and last extreme 
points set to 0. This gives us the last two equations and the system of 
equations is now solvable. 

Using a step size hi = xi+1 − xi, and the continuity condition mi =

S′′
i(xi), then under the boundary conditions of the natural spline, the 

entire system of equations can be expressed as the following tridiagonal 
matrix equation: 
⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1 0 0 ⋯ 0
h0 2(h0 + h1) h1 0
0 h1 2(h1 + h2) h2 0
0 0 h2 2(h2 + h3) h3 ⋮
⋮
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0 ⋯ 0 0 1
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⎦

After we solve for m, the coefficients of each spline function can be 
expressed as: 

ai = yi  

bi =
yi − yi

hi
−

hi

2
mi −

hi

6
(mi+1 − mi)

ci =
mi

2  

di =
mi+1 − mi

6hi 

Envelope interpolation in MEMD is a more complicated process than 
in the traditional univariate EMD. The extreme points in the projected 
signal will correspond to multivariate extreme points in the input signal 
using points generated by backprojection with the location of the 
extreme points in the projected signal. Fig. 6 shows a simple example for 
explanation. There are three input channels and and certain number of 
projected signals. We detected four four extreme point locations in one 
of the projected signals, x0, x1, x2, x3, which are projected back to each 

Table 4 
The maximum number of data samples per channel the proposed implementation can process on the different test GPU cards.  

Number of channels RTX 3070 mobile Titan XP Tesla V100 

# Direction vectors # Direction vectors # Direction vectors  

64 128 256 64 128 256 64 128 256 

32 
64 
128 

78k 40k 20k 118k 60k 30k 164k 84k 42k 
40k 20k 10k 60k 30k 14k 84k 42k 20k 
20k 10k 4k 30k 14k 6k 42k 20k 10k  

Fig. 13. 32-channel 64 direction vectors, up to 78k samples, MATLAB vs GPU 
execution times. 

Fig. 14. Speedup for 32-channel 64 direction vectors, up to 78k samples, 
compared to MATLAB. 

Fig. 15. 64-channel 128 direction vectors, up to 20k samples, MATLAB and 
GPU execution times. 
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input signal to obtain signal values y0-y11. 
Each multivariate extreme point is composed of three values ob-

tained for the give location with a lookup operation from the three input 
channels (e.g. x0 –> y0, y4, y8). Next, cubic spline interpolation, outline 
above, will be performed on each input channel. Note that each channel 
will generate one tridiagonal matrix equation using the same coefficient 
matrix as the other channels. This allows us to use a batch tridiagonal 
solver in which many right hand side vectors represent the different 
channels. For this we used the multi-right-hand tridiagonal system 
solver function cusparseSgtsv2 of the cuSparse CUDA library. This 
function uses the Parallel Cyclic Reduction [36] algorithm to solve the 
equations in parallel instead of the commonly used sequential Thomas 
algorithm. 

Before solving the equations, the tridiagonal system of equation must 
be generated for each direction vector. Our CUDA kernel tridiago-
nalSetup generates each row of the tridiagonal coefficient matrix based 
on the extrema locations in the projected signal and one value of the 
right-hand matrix. 

Once the system of equations is solved for m, the kernel function 
splineCoefficients will launch a number of threads equal to the number 
of interpolating splines to compute the corresponding polynomial co-
efficients (a,b, c,d) and store them in the GPU memory. 

The actual interpolation operation based on the computed poly-
nomial coefficients (a,b,c,d) is handled by the CUDA kernel interpolate. 
Since the number of extreme points will decrease with each IMF itera-
tion, the number of values between extreme points that need to be 
interpolated will also vary with each iteration. Therefore, in the kernel 
function, we use a binary search to select the coefficients of the spline 
function corresponding to each gap, and each thread is scheduled to 
compute a single point in the interpolated spline. 

After interpolating the multivariate upper and lower envelopes, the 
mean multivariate envelope of the input signal is calculated, which after 
subtracting it from the input signal will give us a potential IMF. This 
process consists of two parts. First, for each direction vector, we calcu-
late the mean multivariate envelope from the multivariate upper and 
lower envelopes. This step is handled by the kernel function aver-
ageUpperLower. Second, since each direction vector will have its own 
corresponding mean multivariate envelope, we need to average these 
mean multivariate envelopes for all direction vectors to obtain the final 
mean multivariate envelope of the input signal. This step is performed 
by the kernel function averageDirection. After this step, one candidate 
IMF is generated by subtracting the multivariate average envelope from 
the input signal, and a new iteration of MEMD algorithm will begin. 

3.6. Data layout in memory 

In heterogeneous accelerated computing systems, the memory of the 
CPU and GPU are two independent subsystems that communicate with 
each other via the PCI-e bus. Even the current state-of-the-art PCI-e 
4.0 × 16 bus can only provide 32 GB/s bandwidth, which is still far 
below the bandwidth of the GPU global memory (several hundred GB/ 
s). Consequently, data exchange between CPU and GPU memory is a 
time-consuming operation which should be minimised to achieve high 
efficiency. The ideal situation is to allocate GPU memory only once, 
store all data in GPU memory and all operations are performed in GPU 
memory without CPU interaction. In our parallel implementation of 
MEMD, we allocate memory for all variables in GPU memory before the 
computation starts, and the memory exchange between CPU and GPU is 
limited to the copying the input signals and direction vectors to the GPU 
and retrieving the final decomposition results. The allocation of memory 
is mainly controlled by three size variables, namely the length of the 
multivariate signal (SignalLength), the dimension of the multivariate 
signal (SignalDim), and the number of direction vectors (NumDirVec-
tor). Table 2 lists the memory requirement of each variable and their use 
in the GPU kernels. 

4. Results 

In this section, we first list the architectural details of GPU systems 
we used for testing our implementation, then present the numerical 
validation results using synthetic datasets. this is followed by perfor-
mance results using real high-density EEG datasets. 

4.1. Test hardware 

Different types of NVIDIA GPU cards were used in the testing process 
to explore performance variation across architecture families and card 
models. We selected different NVIDIA gaming and compute cards, 

Fig. 16. Speedup for 64-channel 128 direction vectors, up to 20k samples 
compared to MATLAB. 

Fig. 17. 128-channel 256 direction vectors, up to 10k samples, MATLAB and 
GPU execution times. 

Fig. 18. Speedup for 128-channel 256 direction vectors, up to 10k samples 
compared to MATLAB. 
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whose details are listed in Table 3. The now outdated GTX 980 was used 
only to compare performance with the only known MEMD GPU imple-
mentation [23]. The Titan Xp and RTX 3070 were used both for devel-
opment and testing. The V100 card was only used for performance 
measurement. The core count of the GPUs ranges between 2048 and 
5120, while the performance varies from 4.98 to 16.69 TFlop/s (single 
precision). For the MATLAB tests, we used an i7–9700 K CPU (8 cores, 
3.60 GHz base frequency, 4.90 GHz turbo frequency) and MATLAB 
r2019a. 

4.2. Numerical validation 

We used several synthetic datasets and real EEG measurements for 
validating the correctness of our implementation. Some datasets were 

used in order to compare our results with literature data while others 
were used for quantitative tests and comparison with the reference 
MATLAB implementations. 

4.2.1. Synthetic Dataset 1 
The first synthetic dataset used in the validation process was 

described in [1] (also available online3) and contains 6, 12 and 16-chan-
nel multivariate data series. The hexavariate dataset was generated by 
adding four different frequency sine waves (x1: f1 = 2 Hz, x2: f2 = 8 Hz, 
x3: f3 = 16 Hz and x4: f4 = 32 Hz) and noise to different subsets of 

Table 5 
Relative contributions of the kernels to the overall execution time. Channel count is 32, number of direction vectors are 64.  

Table 6 
Relative contributions of the kernels to the overall execution time. Channel count is 128, number of direction vectors are 256.  

3 https://www.commsp.ee.ic.ac.uk/~mandic/research/memd/ 
MEMD_Supplement.zip 
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channels so that x1 appears in Channels 1,2 and 4, x2 in Channels 1–3 
and 5, x3 in all channels, x4 in Channels 1, 3–4 and 6, and noise in 
Channels 1–3, making it suitable for mode alignment test. Since this 
dataset was used as test data in [23], we will use primarily for perfor-
mance comparison but for visual inspection, the result of the MEMD 
decomposition of this dataset obtained with our GPU implementation is 
shown in Fig. 7. The top row contains the individual input signals of the 
hexavariate dataset (Channels 1–6). The subsequent rows, from IMF 
1–7, show the extracted oscillatory modes for each channel, starting 
with the noise (IMF1–3) then the signal components. 

Fig. 8 illustrates the decomposition result of the 16-channel synthetic 
signal. The correct mode alignment (some channels showing a noise or 
specific oscillatory mode while others showing none or negligible 
components) is evident. Our implementation correctly identified the 
noise and sine wave components common in multiple channels in all 
three datasets and matched the results reported in [23]. 

4.2.2. Synthetic Dataset 2 
The second synthetic dataset was created for testing the numerical 

accuracy of our decomposition implementation. We generated a hex-
avariate dataset without added noise by adding five pure sine waves of 
different frequencies (x1: f1 = 2 Hz, x2: f2 = 6 Hz, x3: f3 = 11 Hz and x4: f4 
= 19 Hz, x5: f5 = 40 Hz) to different subsets of channels so that x1 ap-
pears in Channels 1–3, x2 in Channels 1–4, x3 in Channels 1–2 and 5, x4 
in Channels 1–3 and 5–6, while x5 in Channels 1, 3–4 and 6. 

4.2.2.1. Similarity index. To quantify the accuracy of the decomposi-
tion, we compared the original and decomposed signal components 
using the Similarity Index metric ρ given as 

ρi(xi(t), IMFi(t)) =
cov(xi(t), IMFi(t))

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
var(xi(t))

√ ̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
var(IMFi(t))

√

where cov() represents covariance of the input signal and the corre-
sponding IMF, var() represents the variance of the input signal and the 
IMF, respectively. A ρ = 1 value represents identical input signal 
component and IMF, i.e. perfect decomposition. Fig. 9 shows the result 
of the decomposition of this dataset including the Similarity Index 
values above each IMF component. The lowest value of ρ is 0.971, while 
the majority similarity index values are above 0.99. 

4.2.3. EEG dataset 
To compare our decomposition results with the MEMD MATLAB 

implementation, we selected a real EEG dataset from the samples pro-
vided with the EEGLAB Toolbox [37]. The selected dataset consists of 32 
channels each with 30,504 samples (sampling frequency is 512 Hz). In  
Fig. 10, we show the result of the signal decomposition of Channel 4 of 
the dataset from t = 1–5 s. The different oscillation frequencies, ampli-
tude and frequency modulations are clearly visible in the different IMFs. 
The results were compared with the EMDLAB MEMD MATLAB imple-
mentation [24]. The resulting similarity index values of the 32 channels 
for each IMF are plotted in Fig. 11. The difference, which is due to dif-
ferences in floating point arithmetic instruction implementations on the 
CPU and GPU and slight differences in extrema detection boundary 
conditions, is less than 1.8 % on average. 

Fig. 19. Execution timeline of one iteration of the IMF computation look of the MEMD algorithm.  

Fig. 20. The Roofline performance model of the RTX 3070 mobile GPU 
showing the performance positions of the main kernels of the implementation. 
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4.3. Performance results 

In this section, we present performance results using several metrics 
that characterise the performance of GPU implementations. For end 
users, wall clock time is the most important measure along with time 
reduction level (speedup) when compared to the implementation they 
hope to replace. For developers, additional measures, such as hardware 
efficiency, achieved peak compute performance, arithmetic intensity are 
important, as they characterise the quality of the implementation and 
the extent to how much the GPU card is utilised during the program 
execution. 

We measured and compared the execution time of our GPU imple-
mentation on different GPU cards and compared it with MATLAB run-
times. We also provide speedup results indicating the speed advantage of 
the GPU implementation over the MATLAB one. Note, however, that 
GPU speedup (S = TCPU/TGPU) can easily become a misleading metric as 
it is often based on inefficient CPU implementations, might ignore 
programming language and multi-core CPU execution effects. 

First, we compared the performance of our implementation to the 
only MEMD GPU implementation found in the literature [23]. Since 
several new GPU architecture generations have appeared since the date 
of publication of Mujahid et al.’s paper, to compare the implementation 
efficiency of our implementation objectively, we had to execute our 
program on the very same type of card (GTX 980) that was used in [23]. 
The execution time obtained this way with our version on two datasets 
(6 and 16 channels, signal length = 1000 samples) from Dataset A is 
shown in Fig. 12. On average, our implementation achieves a 1.69x 
speedup in execution time. 

Next, the MATLAB MEMD execution time was compared with our 
proposed GPU implementation executed on various GPU cards. The 
implementations were performed by varying the number of input 
channels, the number of samples per channel, and the number of di-
rection vectors. The hardware details of the test systems are listed in 
Table 3. Since the memory size was different on the different GPU cards, 
we had to use slightly different problem sizes on each system. Table 4 
shows the maximum number of input samples each GPU can process for 
different channel count and projection vector size parameter 
combinations. 

The execution time and speedup results of the different test cases (32, 
64 and 128 EEG channels) are shown in Figs. 13–18. The execution time 
figures show the MATLAB and three GPU execution time curves as a 
function of sample size. The Speedup figures show the speedup values 
calculated from the GPU runtime values and the MATLAB MEMD 
execution time. The MATLAB script was executed on an 8-core Intel 
i7–9700 K CPU. 

The execution time results show that for all channel number cases the 
GPU execution time was below or around 10 s for all signal length. The 
speedup values show a positive correlation with signal length that im-
plies that the more data is fed into the GPU the more efficient it becomes 
during execution due to the increased number of threads ready for 
execution. This demonstrably helps in hiding memory data transfer la-
tencies. The V100 speedup values – in the range of 180–430x – are an 
order of magnitude higher than previously reported ones. 

4.4. Performance analysis 

Here we provide a summary of the performance evaluation of our 
MEMD implementation. We profiled the code to identify potential per-
formance bottlenecks and see the relative weight of each GPU kernel 
during program execution. Table 5 shows the results we obtained with 
the 32-channel EEG dataset (64 direction vectors) on the V100 card 
while varying the input signal length. Each column shows the relative 
contribution of the kernels to the execution time for the signal length of 
the column. Kernels with names set in italic are part of the tridiagonal 
solver implementation cusparseSgtsv2_nopivot() of the NVIDIA cuS-
parse library. The other kernels were developed by us. To help visualise 

performance trends, we used green and blue colour bars to show the 
change of the relative contributions of the cuSparse kernels and ours, 
respectively. The last two rows of the table show the total relative 
contribution of the cuSparse library and our custom kernels. 

Table 6 shows the profiling results obtained with a 128-channel EEG 
dataset (256 direction vectors), also executed on a V100 GPU. Both 
Table 5 and Table 6 show that the tridiagonal solver dominates program 
execution time. In the 32-channel dataset, the relative weight of the 
solver decreases with increasing signal lengths, largely due to the 
increasing execution time of our spline interpolation kernel ‘interpo-
late’. At around 80k sample size, the time spent in the solver and in our 
other kernels becomes equal, after which our custom kernels tend to be 
more dominant in the execution time profile. In the 128-channel case, 
when the number of direction vectors are quadrupled, the memory 
limits the execution for up to 12k samples per channel, only. In this input 
size range, the cuSparse solver becomes an even more important per-
formance limiting factor, with larger than 72 % share of the execution 
time. The execution time of the interpolation kernel increases here as 
well but its relative weight is much less than in the 32-channel case. 

The GPU utilisation of our most critical kernel ‘interpolate’ reaches 
54 % compute and 45 % memory utilisation. Its floating point perfor-
mance is relatively modest (64 GFlop/s) as most operations involve 
integer arithmetic, but the integer performance is over 1600 GOp/s. The 
execution timeline of one iteration of the MEMD program is shown in  
Fig. 19. The timeline data was obtained on a Titan Xp card. At the 
bottom of the picture, the ‘Device %’ row illustrates the utilisation of the 
GPU is nearly 100 % throughout the program with very little idle time 
periods (gaps) in the timeline. 

We performed a Roofline [38] performance analysis that showed 
that the kernels (thus the entire program) in general are memory bound 
as they perform relatively few floating point arithmetic instructions 
compared to the data movement operations. The instruction-to-byte 
ratio of modern GPUs are typically between 14 and 30, hence only 
kernels having an Arithmetic Intensity value of 14 of higher can achieve 
close to peak compute performance. The arithmetic intensity of the 
kernels in our implementation are in the range of 0.1–2.2 and thus are 
limited by the memory bandwidth of the GPU cards. Fig. 20 illustrates 
the performance of the most critical kernels of our implementation on 
the roofline model of the RTX 3070 mobile GPU. Kernels marked with 
green boxes designate the kernels implementing the cuSparse tridiago-
nal solver. Blue circles mark custom kernels we developed for this 
implementation. The figure shows that our kernels reach close to theo-
retical performance (lie on or close to the global memory performance 
boundary line), while the NVIDIA kernels perform relatively poorly. 
Unfortunately, the implementation is proprietary; hence, we did not 
have an opportunity to perform further performance optimisation on 
them. 

Our implementation proved to be correct and efficient, executing the 
MEMD algorithm within 1.2–17 s for up to 128 channels. The maximum 
sample length on a V100 GPU for 128 channels is 10k that may represent 
5–40 s of measurement depending on the selected sampling frequency 
(256–2048 Hz). This is typically sufficient for epoch processing in Event 
Related Potential studies or for analysing windowed data. When using 
lower sampling frequencies (256 or 512 Hz), our processing time is 
shorter than the length of the data window which offers the possibility of 
using it in real-time and/or clinical applications. 

5. Conclusions 

In this paper, we described an efficient GPU implementation of the 
MEMD algorithm implemented in CUDA. Multivariate Empirical Mode 
Decomposition enables the accurate extraction of AM/FM modulated 
oscillatory modes of multi-channel high-density EEG/MEG datasets 
without the presence of the mode-alignment problem. This can open 
new opportunities in the deeper understanding of the brain processes 
underlying the execution of cognitive tasks or finding biomarkers for the 
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early diagnosis of neurodegenerative diseases. 
Our implementation was validated and tested for performance and 

correctness on different hardware platforms using a varying set of 
parameter values of channel count, direction vectors and signal sample 
size. The final version achieved a 180x to 430x speedup dependent on 
the length of the input signal and the GPU used with high decomposition 
accuracy. This level of performance can reduce data analysis execution 
times from days to minutes or from hours to seconds. Further perfor-
mance increase can be expected from the Ampere and Hopper archi-
tectures and from multi-GPU extensions that are among our future plans. 
The source code of our implementation is available under the MIT Open 
Source license for the interested readers for use in applications or further 
improvements at the following URL: https://github.com/EEGLab-Pann 
on/MEMD-GPU. 

CRediT authorship contribution statement 

Zeyu Wang: Conceptualization, Methodology, Software, Validation, 
Investigation, Data curation, Writing – original draft, Visualization. 
Zoltan Juhasz: Conceptualization, Methodology, Resources, Writing – 
review & editing, Supervision, Project administration, Funding 
acquisition. 

Declaration of Competing Interest 

The authors declare that they have no known competing financial 
interests or personal relationships that could have appeared to influence 
the work reported in this paper. 

Data availability 

Data will be made available on request. 

Acknowledgements 

This research was partially supported by the Ministry of Innovation 
and Technology of Hungary from the National Research, Development 
and Innovation Fund (Project no. 2019-2.1.11-TÉT-2019-00069), 
financed under the 2019-2.1.11-TÉT funding scheme and the European 
Union’s Horizon 2020 Research and Innovation program under Grant 
Agreement No 101008468 (SLICES-SC). The support of the NVIDIA GPU 
Grant Program is also gratefully acknowledged. 

References 

[1] N. Rehman, D.P. Mandic, Multivariate empirical mode decomposition, Proc. R. Soc. 
A Math. Phys. Eng. Sci. 466 (2010) 1291–1302, https://doi.org/10.1098/ 
rspa.2009.0502. 

[2] N.E. Huang, Z. Shen, S.R. Long, M.C. Wu, H.H. Snin, Q. Zheng, N.C. Yen, C.C. Tung, 
H.H. Liu, The empirical mode decomposition and the Hilbert spectrum for 
nonlinear and non-stationary time series analysis, Proc. R. Soc. A Math. Phys. Eng. 
Sci. 454 (1998) 903–995, https://doi.org/10.1098/rspa.1998.0193. 

[3] G. Buzsaki, A. Draguhn, Neuronal oscillations in cortical networks, Science 304 
(2004) 1926–1929, https://doi.org/10.1126/science.1099745. 

[4] G. Wang, X.Y. Chen, F.L. Qiao, Z. Wu, N.E. Huang, On intrinsic mode function, 
Adv. Adapt. Data Anal. 2 (2010) 277–293, https://doi.org/10.1142/ 
S1793536910000549. 

[5] A.R. Hassan, A. Subasi, Automatic identification of epileptic seizures from EEG 
signals using linear programming boosting, Comput. Methods Prog. Biomed. 136 
(2016) 65–77, https://doi.org/10.1016/j.cmpb.2016.08.013. 

[6] P. Shahsavari Baboukani, G. Azemi, B. Boashash, P. Colditz, A. Omidvarnia, 
A novel multivariate phase synchrony measure: application to multichannel 
newborn EEG analysis, Digit. Signal Process. A Rev. J. 84 (2019) 59–68, https:// 
doi.org/10.1016/j.dsp.2018.08.019. 

[7] H. Liang, S.L. Bressler, E.A. Buffalo, R. Desimone, P. Fries, Empirical mode 
decomposition of field potentials from macaque V4 in visual spatial attention, Biol. 
Cybern. 92 (2005) 380–392, https://doi.org/10.1007/s00422-005-0566-y. 

[8] L. Wang, G. Xu, S. Yang, W. Yan, Application of Hilbert-Huang Transform for the 
Study of Motor Imagery Tasks, (2008) 3848–3851. 

[9] S. Aviyente, A. Tootell, E.M. Bernat, Time-frequency phase-synchrony approaches 
with ERPs, Int. J. Psychophysiol. 111 (2017) 88–97, https://doi.org/10.1016/j. 
ijpsycho.2016.11.006. 

[10] W. Zhaohua, N.E. Huang, Ensemble empirical mode decomposition: a noise- 
assisted data analysis method, Biomed. Tech. 55 (2010) 193–201. 

[11] M.A. Colominas, G. Schlotthauer, M.E. Torres, Improved complete ensemble EMD: 
a suitable tool for biomedical signal processing, Biomed. Signal. Process. Control. 
14 (2014) 19–29, https://doi.org/10.1016/j.bspc.2014.06.009. 

[12] A. Bruns, Fourier-, Hilbert- and wavelet-based signal analysis: are they really 
different approaches? J. Neurosci. Methods 137 (2004) 321–332, https://doi.org/ 
10.1016/j.jneumeth.2004.03.002. 

[13] O.A. Rosso, L. Romanelli, S. Blanco, L. Romanelli, R.Q. Quiroga, S. Blanco, R. 
Q. Quiroga, H. Garcia, O.A. Rosso, Stationarity of the EEG Series, IEEE Eng. Med. 
Biol. Mag. 14 (1995) 395–399, https://doi.org/10.1109/51.395321. 
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