
Journal of Computational Science 74 (2023) 102180

Available online 10 November 2023
1877-7503/© 2023 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-
nc-nd/4.0/).

Efficient GPU implementation of the multivariate empirical mode
decomposition algorithm

Zeyu Wang *, Zoltan Juhasz
Department of Electrical Engineering and Information Systems, University of Pannonia, Egyetem u. 10, Veszprem 8200 Hungary

A R T I C L E I N F O

Keywords:
Multivariate empirical mode decomposition
GPU
CUDA
EEG

A B S T R A C T

An efficient GPU implementation of the Multivariate Empirical Mode Decomposition (MEMD) method is pre-
sented for speeding up the process of decomposing non-stationary multi-channel bioelectric signals into different
oscillation modes. Each step of the MEMD algorithm is designed with performance in mind and implemented to
remove all unnecessary overheads caused by CPU-GPU communication, data transfer operations and synchro-
nisation. The implementation is validated with synthetic and real EEG signals of different lengths and channels
(up to 128 channels) on different GPU cards, and compared to existing serial MEMD implementations. The final
implementation achieved between 180x-430x speedup compared to MATLAB and a 10x improvement over the
only known existing GPU implementation. The average decomposition error of our implementation is below 1.2
%. Our GPU program is the fastest known GPU implementation of the MEMD algorithm that reduces execution
time from hours to seconds and as such makes it possible to perform MEMD time-frequency analysis of high-
density EEG (MEG) or similar multi-channel signals in a fraction of time and opens the road towards its prac-
tical applicability.

1. Introduction

Multivariate Empirical Mode Decomposition (MEMD) is a recently
introduced method for analysing the spatiotemporal dynamics of
multivariate signals [1] based on Huang’s Empirical Mode Decomposi-
tion (EMD) [2] proposed for time-frequency analysis of natural signals.
The key difference between EMD-based and traditional time-frequency
analysis approaches (such as FFT and Wavelet decomposition) is that
EMD is a data-driven, adaptive method that does not rely on a set of
predetermined basis functions, and its basis functions (Intrinsic Mode
Functions, IMFs) are derived automatically from the data itself.

While EMD and MEMD have been used successfully in many appli-
cation domains (e.g. geology, earthquake monitoring, astronomy, man-
built structure monitoring, machine vibration analysis), it is especially
suited to multi-sensor biosignal analysis. In this paper, we focus on its
efficient use for analysing electroencephalography (EEG) data. EEG
registers scalp potential variations generated by neural sources of the
brain. Neuroscience research identified and confirmed that communi-
cation between different cortical areas is facilitated by oscillations [3],
of whose amplitude and frequency may be modulated by other

underlying processes or conditions. Consequently, accurate detection of
ongoing oscillations is a key step in many EEG signal-processing ana-
lyses. Being the result of natural processes in the brain, EEG signals,
however, do not satisfy the stationarity and periodicity conditions
required for Fourier or Wavelet transform based time-frequency anal-
ysis. Moreover, these two transforms suffer from the time-frequency
uncertainty principle, which means we cannot achieve high temporal
and frequency resolution at the same time. In addition, these methods
fail to uncover amplitude and frequency modulations of the extracted
oscillatory basis functions.

EMD presents a special opportunity for the EEG community as it can
decompose a wide-band EEG signal into several narrow band IMFs that
carry frequency and amplitude modulation information and provide
instantaneous frequency and phase information at every time step [4].
With EMD, we may be able to extract information that previously stayed
hidden from us during analysis, hence it can become the tool helping
researchers to understand the mesoscopic behaviour and dynamics of
the brain.

Several studies used the original EMD algorithm or one of its variants
for analysing EEG signals [5–9]. Despite promising results, there are still

* Corresponding author.
E-mail address: zeyu.wang@mik.uni-pannon.hu (Z. Wang).

Contents lists available at ScienceDirect

Journal of Computational Science

journal homepage: www.elsevier.com/locate/jocs

https://doi.org/10.1016/j.jocs.2023.102180
Received 28 December 2022; Received in revised form 1 November 2023; Accepted 7 November 2023

mailto:zeyu.wang@mik.uni-pannon.hu
www.sciencedirect.com/science/journal/18777503
https://www.elsevier.com/locate/jocs
https://doi.org/10.1016/j.jocs.2023.102180
https://doi.org/10.1016/j.jocs.2023.102180
https://doi.org/10.1016/j.jocs.2023.102180
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jocs.2023.102180&domain=pdf
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/

Journal of Computational Science 74 (2023) 102180

2

several methodological and technical obstacles that limit the wide-
spread application of these techniques. The original EMD method is very
sensitive to noise, hence noise-assisted extensions such as Ensemble
Empirical Mode Decomposition (EEMD) [10] and Complete Ensemble
Empirical Mode Decomposition with Assisted Noise (CEEMDAN) [11]
were recommended as improvements. Unfortunately, both variants
result in a two orders of magnitude increase in execution time. As a
further problem, EMD and its variants are univariate methods, thus they
decompose signals to IMFs in isolation (i.e. single electrode only). EEG,
however, is a multivariate signal, recorded by several electrodes
simultaneously. If a single channel EMD (or EEMD/CEEMDAN) is
executed independently on the different signals of the multi-electrode
EEG dataset, there is no guarantee that the same number of IMFs will
be extracted from each signal and with identical central frequencies.
Consequently, we will not be able to infer correct inter-electrode re-
lationships that are mandatory for spatiotemporal spectral analysis and
brain connectivity network calculation.

The multivariate extension (MEMD) of EMD provides the necessary
mechanism to treat a multi-electrode EEG measurement as a multivar-
iate signal and decompose each electrode into an identical number of
IMFs with matching central frequencies. The main drawback of this
method is its prohibitively large execution time. To achieve practical
usability, 2–3 orders of magnitude speedup is required, which can only
be achieved economically with GPU accelerators. State-of-the-art GPUs
provide massively parallel execution capabilities with exceptional effi-
ciency reaching computational peak performance up to 10–40 TFlop/s.
We assume that GPU computing, GPU architecture and their funda-
mental programming concepts are familiar to the readers of this journal.
For further technical details, we refer the readers to the research liter-
ature, and various other sources of programming and hardware
documentation.

In this paper, we describe an efficient, high-performance parallel
CUDA implementation of the MEMD algorithm that (i) can be executed
on NVIDIA GPUs and (ii) reduce the execution time from hours to sec-
onds. To the best of our knowledge, this is the second known MEMD GPU
implementation, and the first one that provides publicly available source
code1 and demonstrates exceptional performance up to 128 EEG

channels.
The structure of the paper is as follows. Section 2 introduces the

Empirical Mode Decomposition, the Ensemble Empirical Mode Decom-
position and the Multivariate Empirical Mode Decomposition methods,
followed by an overview of existing works in the parallel implementa-
tions of EMD and its variants. Section 3 describes the parallel imple-
mentation strategy for the MEMD method and provides details of the
CUDA GPU implementation focusing on performance-oriented design.
Section 4 presents the results of our work in terms of implementation
accuracy, execution time, speedup and performance analysis. The paper
ends with the Conclusions.

2. Related work

The frequency range of interest of EEG measurements is usually
between 0.1 and 100 Hz. Based on historical developments and physi-
ological evidence, this frequency range is partitioned into distinct
characteristic frequency bands, namely into the delta (1–4 Hz), theta
(4–8 Hz), alpha (8–13 Hz), beta (13–30 Hz) and gamma (30–150 Hz)
bands. While power changes of these bands might reveal important
diagnostic information, to better understand the cortical processes un-
derlying the resting state and task execution mechanisms of the human
brain, time-frequency analysis is required.

Traditionally, the Short-Time Fourier Transform (STFFT) and the
Continuous Wavelet Transform (CWT) using the Morlet wavelet family
are the most widespread methods for time-frequency analysis [12]. Both
methods assume pre-determined basis functions and rely on signal sta-
tionarity [13]. The EEG signal – as most natural signals – is non-periodic
and non-stationary, violating our basic assumptions. In addition, the
exact time-localization of cortical events is difficult due to the
time-frequency uncertainty principle.

Several new techniques have been proposed over the past two de-
cades attempting to overcome some or all of the above limitations,
namely the synchrosqueezed Fourier [14–16], and synchrosqueezed
wavelet transforms [17], Empirical Mode Decomposition [2], Varia-
tional Mode Decomposition[18], and Singular Spectrum Analysis [19].
Of these methods, Empirical Mode Decomposition and its variants are
used most frequently in EEG research, therefore we focus here on this
method only.

Fig. 1. The original synthetic signal and its decomposed IMFs. Mode mixing is evident around 2–2.5 s.

1 https://github.com/EEGLab-Pannon/MEMD-GPU

Z. Wang and Z. Juhasz

https://github.com/EEGLab-Pannon/MEMD-GPU

Journal of Computational Science 74 (2023) 102180

3

2.1. Empirical mode decomposition

Empirical Mode Decomposition (EMD) is a data-driven signal
decomposition algorithm [2] that can separate a signal into a finite
number of so-called Intrinsic Mode Functions (IMFs) [4]. IMFs are
narrow band signals that contain only one dominant oscillatory mode
of the signal. The advantages of EMD over the Fourier of Wavelet

transforms are that (i) the method can be used without a
pre-determined set of basis functions, (ii) the extracted narrow band
oscillatory modes (IMFs) carry amplitude and frequency modulation
information and (iii) can be used to extract instantaneous frequency
and phase information. The EMD algorithm has a filter-bank property
[20] and as a result, the signal can be easily analysed in a
multi-resolution fashion.

The EMD algorithm automatically extracts the intrinsic mode
functions from the signal starting with the highest frequency com-
ponents and progressing to the lower frequencies. The exact steps of
the algorithm are listed in Algorithm 1. The first step of the decom-
position process is the detection of the extrema (minima and maxima)
of the input signal. The extreme points are used to generate the upper
and lower envelopes of the signal by using cubic spline interpolation.
Next, the mean envelope is calculated from the upper and lower en-
velopes and subtracted from the original signal, creating a residual
signal. This residual is regarded as a potential IMF. A proper IMF
should satisfy the following two conditions; (i) the number of extreme
points and the number of zero-crossings must be equal or the differ-
ence should not exceed one, (ii) the mean value of the mean envelope
should be approximately zero [2]. Since these two conditions are
difficult to satisfy simultaneously, usually the standard deviation, SD,
between two residues is used as the stopping criterion of the sifting
process:

SD =
∑K

k=0

|Rk− 1(t) − Rk(t) |2

(Rk− 1(t))2 < ε

where Rk− 1 and Rk are the final residual signal in the sifting iteration
k − 1 and k, respectively, and ε is the sifting iteration threshold. If resi-
dues of two subsequent iterations are identical within ε, Rk will be

regarded as a proper IMF. This IMF is then subtracted from the input
signal to create the new input signal for the next iteration of the algo-
rithm that extracts the subsequent lower frequency IMF. The process
stops when no further oscillatory IMFs can be extracted or the number of
IMFs reaches a pre-set limit.

Algorithm 1. EMD: Empirical Mode Decomposition [2].

Once the decomposition is complete, the original signal can be rep-
resented as:

X(t) =
∑N

i=1
IMFi(t) +RN(t)

where RN(t) is the final residue that can be considered as the global trend
signal.

To illustrate the operation of the EMD algorithm we show the
decomposition of a synthetic signal X containing five sine waves (xσ , xθ,
xα, xβ, xγ) of frequencies representing each EEG frequency band.
⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

xσ(t) = sin(2π ∗ 2.1 ∗ t)
xθ(t) = sin(2π ∗ 5.8 ∗ t)

xα(t) = sin(2π ∗ 11.2 ∗ t)
xβ(t) = sin(2π ∗ 18.9 ∗ t)
xγ(t) = sin(2π ∗ 40.3 ∗ t)

X(t) = xσ(t)+ xθ(t)+ xα(t)+ xβ(t)+ xγ(t)

The result of the decomposition process of a synthetic signal is shown
in Fig. 1. The top row shows the input signal, while the other rows
display the extracted IMFs in order of decreasing central frequency.
Notice that IMFs 1–6 contain multiple frequencies (oscillation modes)
within a given IMF. This phenomenon is called mode mixing caused by
signal noise that changes the location of the signal extrema and disturb
the decomposition process [21]. The need to solve the mode mixing
problem has led to the development of several variants of the EMD al-
gorithm that we describe briefly in the next subsection.

Z. Wang and Z. Juhasz

Journal of Computational Science 74 (2023) 102180

4

Fig. 2. The principle of extreme point detection in a multivariate signal. (a) Two direction vectors used for projecting the multivariate signal. (b, c) The projected
signals and their upper and lower envelopes produced along the two direction vectors. (d) The mean multivariate envelope (blue line) produced by averaging all
multivariate upper and lower envelopes.

Table 1
CUDA kernels used in different stages in the MEMD GPU implementation.

Steps in MEMD Kernel function (s) Description

Preprocess generateHammSeq() Generate Hammersley sequence from primes
generateDirVec() Generate direction vectors from Hammersley sequence

Signal projection cublasSgemm() Multiply the input signal and the direction vectors
Extrema detection findExtremaShfl() Detect the location of extreme points

scanLargeDeviceArray() Generate index of compact vector
scanSmallDeviceArray() Generate index of compact vector
selectExtremaMax/Min() Generate compact extrema vector
setBoundary() Set the boundary condition

Cubic spline interpolation tridiagonalSetup() Generate tridiagonal system
cusparseSgtsv2() Solve the tridiagonal system
splineCoefficients() Generate spline coefficients for gaps
interpolate() Generate upper and lower envelopes

Envelopes averaging averageUppperLower() Generate multivariate mean envelope for direction vectors
averageDirection() Generate the multivariate mean envelope of input signal

Signal updating updateSignal() Subtract the mean envelope to generate new input signal

Z. Wang and Z. Juhasz

Journal of Computational Science 74 (2023) 102180

5

2.2. Improvements of the EMD algorithm

To solve the mode mixing problem, Wu et al. [22] proposed a
noise-assisted signal decomposition method called Ensemble Empirical
Mode Decomposition (EEMD). This algorithm uses multiple copies
(called realizations) of the input signal created by adding random
Gaussian noise to the signal before the decomposition process. As a
result, the distribution of extreme points of the signal will be more
uniform in a statistical sense and become less sensitive to intermittent
noise. The number of realizations in EEMD is a problem-dependent
configuration parameter but, in general, it is in the order of few hun-
dreds. The execution flow of the EEMD method is depicted in Algorithm
2. Compared to EMD, an additional loop is required for the realizations
where each iteration starts with replicating the signal by adding to it
some random white noise. Then, these signals will be decomposed
individually as described in the EMD section. Once the IMFs for each
noisy copy are extracted, they are averaged to generate the resultant
final IMF set.

Algorithm 2. EEMD: Ensemble empirical mode decomposition.

One disadvantage of the EEMD method is that due to the added
noise, the signal reconstructed from the IMFs is not identical to the
original signal, slight noise will appear after the reconstruction. A so-
lution to this problem is given by the improved Complete Ensemble
Empirical Mode Decomposition with Assisted Noise (CEEMDAN) [11].
We skip the details of this algorithm as it is not the focus of this paper.

The interested readers are referred to the reference for further details.

2.3. Multivariate empirical mode decomposition

The EEMD and CEEMDAN algorithms provide reliable de-
compositions for single channel signals. EEG, however (just as many
other multi-sensor application datasets), is normally not a single channel
– univariate – signal, but obtained using a large number of electrodes
simultaneously. If we apply EMD, EEMD or CEEMDAN on such datasets
in a channel-by-channel fashion, different channels may produce
different number of IMFs with potentially different central frequencies.
This is called the mode alignment problem that can present serious
difficulties during group level, spatiotemporal or connectivity analysis.
The Multivariate Empirical Mode Decomposition (MEMD) proposed by
Rehman et al. [1] provides a solution to this problem.

In MEMD, the multi-channel signal is regarded as a multivariate
signal in a high-dimensional space. Similarly to EMD, we still need to
calculate the extreme points and mean envelope and perform the IMF
sifting process, but for multivariate signals, the concept of extreme
points is not well-defined, as the occurrence of extreme points depends

on the projection of the signal to a particular dimension. Fig. 2 shows a
simple example of the multivariate signal extreme point detection, in
which we project the multivariate signal onto two different directions.
The projected signals then are used in the extreme point detection step
and result in two sets of upper and lower envelopes. These will be
averaged to find the mean and subsequently the multivariate IMF.

(1, 1) (2, 1) …… (n, 1)

(1, 2) (2, 2) …… (n, 2)

…
…

…
…

…
…

…
…

(1 ,m) (2, m) …… (n, m)

Ti
m

e

Channels

=

Direc�on vectors

(1, 1) (2, 1) …… (k, 1)

(1, 2) (2, 2) …… (k, 2)

…
…

…
…

…
…

…
…

(1, n) (2, n) …… (k, n)

Input signal matrix S Direc�on vector matrix D

(1, 1) (2, 1) …… (k, 1)

(1, 2) (2, 2) …… (k, 2)

…
…

…
…

…
…

…
…

(1, m) (2, m) …… (k, m)

Projec�on signal matrix P

Ch
an

ne
ls

Direc�on vectors

Ti
m

e

Fig. 3. Computing the projected signals by matrix-matrix multiplication.

Z. Wang and Z. Juhasz

Journal of Computational Science 74 (2023) 102180

6

The use of the direction vectors and signal projection are the main
differences between MEMD and univariate EMD variants. To achieve
precise projections, the number of direction vectors must be as large as
possible but at least twice the number of channels [23]. The direction
vectors should also be uniformly distributed on a hypersphere. The
Hammersley sequence, a low-discrepancy sequence that provides uni-
form angle sampling—also used by Rehman et al. [1]—can provide the
proper basis for generating direction vectors with the desired properties.

The details of the MEMD algorithm are outlined in Algorithm 3. First,
the multivariate input signal will be projected onto the direction vectors
and we will get the projected signal on each direction vector. Then,
extreme point detection is performed on each projected signal, and each
detected extreme point corresponds to a multivariate extreme point in
the input signal, that is, a point in a high-dimensional space. The next
step is to perform cubic spline interpolation in each dimension to create
the upper and lower multivariate envelopes. By averaging these enve-
lopes we generate the multivariate mean envelope of the input signal.
Finally, by subtracting the mean envelope from the input, we can obtain
a candidate IMF. If this IMF meets the stopping criterion, the iteration
will stop, otherwise, the candidate IMF will be used as the input signal
for the next iteration.

Algorithm 3. MEMD: Multivariate Empirical Mode Decomposition.

2.4. Sequential and GPU implementations

Increasing interest in the use of EMD-based methods over the past
two decades have given rise to numerous implementations of Empirical
Mode Decomposition and its variants using different programming
languages and hardware architectures. Flandrin et al. released MATLAB
implementation of the EMD, EEMD algorithms in 2007 and for the
CEEMDAN algorithm in 2012 [11]. To help the work of the EEG signal
analysis community, Al-Subari et al. developed the EMDLAB toolbox
[24] as an extension plug-in for the EEGLAB MATLAB framework [25]
widely used by the neuroscience community. Starting with version
R2018a, MATLAB supports EMD calculation with the built-in emd()

function. While MATLAB implementations are very suitable for EMD
research and for quick integration into existing data-processing pipe-
lines, these implementations are sequential in nature and their typical
execution time (up to several hours or days for high-density EEG data-
sets2) is not acceptable for routine, production use. libeemd [26] is a
library written in the C programming language that provides sequential
and OpenMP-based parallel implementation for EMD, EEMD and
CEEMDAN that achieves around 10x speedup compared to MATLAB.

The rapid rise of GPU technology in High Performance Computing
gave rise to several parallel GPU-accelerated EMD implementations.
Waskito et al. reported the first single-precision CUDA EMD imple-
mentation for audio signal processing achieving 29x and 29.9x speedups
compared to sequential C versions on a C1060 and C2050 NVIDIA Tesla
card, respectively [27,28]. Xie et al. created a CUDA EMD version for
seismic data processing that achieved 4x speedup on a GT240 GPU card
[29]. Huang et al. [30] reported 33.7x speedup on a C2050 GPU using
overlapped piecewise cubic spline interpolation technique.

Since Ensemble EMD has significantly higher computation cost due to
the large number of noise assisted copies of the original signal, paral-
lelism in this case is mandatory to achieve acceptable execution times.
Wang et al.’s implementation is developed for offline spectrum
discrimination of hyperspectral remote sensing images and achieved
60.62x speedup over a sequential C implementation running on an

NVIDIA C1060 Tesla GPU card [31]. In a follow-up paper, they compare
serial MATLAB, sequential and multi-core C as well as their CUDA
implementation (C1060 GPU) and found that sequential C is 5 times
faster than MATLAB, a quad-core C version is 15 times, while the CUDA
version is 60 times faster than the MATLAB implementation [32]. Chen

2 The execution times of the MATLAB MEMD implementation on an 8-core
CPU (Intel Core i7–9700 K, 3.60 GHz) system were 105.7 and 399 min for
the 64-channel 128 direction vector and 128-channel 256 direction vector cases
(signal length: 79,872 samples), respectively. For the typical group size of 25
subjects, these runtimes result in an overall execution time of 44 h (64 chan-
nels) and 6.9 days (128 channels).

Z. Wang and Z. Juhasz

Journal of Computational Science 74 (2023) 102180

7

et al. developed a real-time CUDA EEMD implementation [33] for
anaesthesia monitoring purposes. They showed that it is possible to
achieve real-time processing speed with a GTX295 GPU card (31.3x
speedup, dual GPU card). EMD and EEMD are designed for processing
single sensor channel data but extensions exist for multidimensional
cases. Chang et al. developed implementation for the Multi-Dimensional
EEMD algorithm [34] and Mujahid et al. reported the first Multivariate
EMD GPU implementation [23] achieving 6–16x speedup over the
MATLAB implementation.

The common characteristics of the reviewed GPU implementations
are that (i) they all exploit multiple levels of parallelism and use several
GPU optimisation techniques to achieve acceptable performance gain,
and (ii) use early generation, now outdated GPU processors and early
versions of the CUDA programming language; (iii) the achieved speedup
values are relatively modest, and (iv) source code is not publicly
available.

Fig. 5. The principle of generating compact extreme point vectors using the prefix sum operation.

Fig. 4. The principle of extreme point detection using warp shuffle operations. Red colour marks threads performing the extrema detection steps.

Fig. 6. Batch Multi-right-handed tridiagonal matrix equation generated by multivariate extreme points.

Z. Wang and Z. Juhasz

Journal of Computational Science 74 (2023) 102180

8

3. Methods

Now we turn to the description of our GPU-based parallel MEMD
implementation. As explained in Section 2.3 and show in Algorithm 3,
the main steps of the iterative MEMD algorithm are (i) signal projection
onto the multidimensional direction vectors, (ii) extrema detection in
the projected signals, (iii) cubic spline interpolation to generate upper
and lower envelope of the projected signal (iv) computation of the mean
envelope, and (v) generating the IMF and updating the input signal for
the next iteration. While this series of steps is inherently sequential in
execution, there are many opportunities for parallelism in the execution
in each step. The strategy and implementation details of our parallel
solution is described in the rest of this section.

3.1. Parallel design

In our parallel implementation, each step of MEMD is implemented
by one or more kernel functions executed on the GPU, or by highly
optimized CUDA library functions. Essentially, the kernel function is a
description of the thread behaviour, so by designing the kernel function,
we can arrange independent tasks to different threads. Since the GPU
has a large number of computing cores, threads can be executed in
parallel. When we launch the kernel function on the CPU side, the
threads are organized into blocks with different sizes, and the thread
blocks are organized into grids with different sizes. The calculation steps

of MEMD and its corresponding kernel functions are shown in Table 1.
Threads in kernel functions need to read data from memory for
computation, so the layout of data in memory also plays an important
role in the parallel implementation of MEMD. The following parts are
the details about the implementation in each step and memory layout.

3.2. Pre-processing

In the pre-processing stage, we perform all GPU memory allocations
and initialisations, and generate the direction vectors used later during
the signal projection step. As shown in Fig. 2, direction vectors are
required in MEMD to generate multivariate signal envelopes. These
vectors are unit vectors of a hypersphere represented by their angles.
The more angles we have, the more uniform the distribution of the
vectors can be provided we use suitable sampling algorithm. The
Hammersley sequence – a low-discrepancy sequence that provides uni-
form angle sampling – was used by Rehman et al. [1] as the basis for
generating direction vectors. We also adopted this method in our
implementation. First, a set of prime numbers are generated on the CPU
and copied into the GPU global memory. Next, the CUDA kernel function
generateHammSeq() is executed with each thread performing a radical
inverse operation [35] on one prime number from the set. This is fol-
lowed by the kernel function generateDirVec() that generates the cor-
responding direction vector on the hypersphere. Performing the GPU
memory allocation, initialisation and generating the direction vectors is

Table 2
Device variables used in the GPU implementations, their size and kernels in which they are referenced.

Variable name Dimensions Used in kernel function

d_current SignalLength × SignalDim cublasSgemm()
selectExtrema()
averageDirection()

d_directionVectors SignalDim × NumDirVector cublasSgemm()
d_projectSignals SignalLength × NumDirVector cublasSgemm()

findExtremaShfl()
d_sparseFlag SignalLength × NumDirVector findExtremaShfl()

scanLargeDeviceArray()
scanSmallDeviceArray()
selectExtrema()

d_ScanResult SignalLength × NumDirVector scanLargeDeviceArray()
scanSmallDeviceArray()
selectExtrema()

d_compactValue
d_compactIndex/

SignalLength × SignalDim × NumDirVector selectExtremaM()
splineCoefficients()
interpolate()

d_upperDia
d_middleDia
d_lowerDia
d_right

SignalLength × SignalDim × NumDirVector tridiagonalSetup()
cusparseSgtsv2()

d_solutionGtsv SignalLength × SignalDim × NumDirVector cusparseSgtsv2()
splineCoefficients()

d_b (d_upperDia)
d_c (d_middleDia)
d_d (d_lowerDia)

splineCoefficients()
interpolate()

d_envelopeVaule interpolate()
averageUppperLower()

d_meanEnvelope averageUppperLower()
averageDirection()

d_running SignalLength × SignalDim
d_IMFs SignalLength × SignalDim × NumIMFs

Table 3
Architecture parameters of the GPU platforms used for measurements.

GTX 980 Titan Xp Tesla V100 RTX 3070 mobile

Architecture Maxwell Pascal Volta Ampere
CUDA cores 2048 3840 5120 5120
Clock frequency (GHz) 1.126 1.48 1.46 1.62
Memory (GB) 4 12 16 8
Peak FP32 performance (TFlop/s) 4.98 11.36 14.03 16.59
CUDA version 10.2 10.2 11.3 11.4

Z. Wang and Z. Juhasz

Journal of Computational Science 74 (2023) 102180

9

a one-time execution step, not part of the iterative process of MEMD,
therefore it has negligible impact on the performance of the overall
algorithm.

3.3. Signal projection to direction vectors

Once the direction vectors are obtained, the multivariate input signal
must be projected onto each direction vector. The projection of one
signal vector onto a direction vector can be represented as the dot
product of the two vectors; consequently, the projection of a multivar-
iate input signal onto multiple direction vectors can be represented as a
matrix-matrix multiplication operation. As shown in Fig. 3, the projec-
tion signal matrix P (SignalLength × NumDirVector) can be obtained
after we multiply the input signal matrix S (SignalLength × SignalDim)
and the direction vector matrix D (SignalDim × NumDirVector).

The multivariate input signal projection operation (matrix-matrix
multiplication) is performed by the cuBLAS library function cublasS-
gemm. The cuBLAS linear algebra library is highly optimized for NVIDIA
GPUs and provides convenient and high-performance program in-
terfaces for vector and matrix algebra operations. The resulting pro-
jected signal matrix P is input to the subsequent extrema detection step,
during which each projected signal (a column of P) will be used as an
independent input signal.

3.4. Extrema detection

The way to detect extrema is to compare a signal value with the
values of its two adjacent neighbours and decide whether the value is an
extrema (maximum or minimum) or not. This operation can be per-
formed for each value in parallel by a GPU thread. This requires one

Fig. 7. Result of the MEMD decomposition of the hexavariate dataset.

Fig. 8. Result of the MEMD decomposition of the 16-channel dataset.

Z. Wang and Z. Juhasz

Journal of Computational Science 74 (2023) 102180

10

Fig. 9. Decomposition results of Dataset B hexavariate signal with Similarity Index values shown in bold for each component.

Fig. 10. A section of the EEG signal (Channel 4) of the EEG sample dataset and the resulting IMFs (IMF1–8) of the GPU MEMD implementation.

Z. Wang and Z. Juhasz

Journal of Computational Science 74 (2023) 102180

11

thread to read three values then to perform the comparison. Reading the
three values from global memory in each thread is an inefficient strategy
for several reasons; (i) data needs to be loaded from slow memory, (ii)
each thread needs 3 load instructions for 1 comparison, and (iii) each
value is read multiple times as threads cover the entire input vector. A
typical approach in CUDA programming in these situations is to use the
on-chip shared memory that can store several input values in fast
memory that is accessible to all threads in a thread block. This reduces
the number of necessary load instructions and increases access speed as
well. However, we still need three load instructions per thread, and
performance degrading shared memory bank conflicts may also occur.

In our parallel implementation, we used the CUDA warp level shuffle
instructions __shfl_up_sync and __shfl_down_sync in the extrema detec-
tion kernel function findExtremaShfl. The shuffle instruction is a
intrinsic hardware accelerated warp-level instruction that provides
direct access to register variables of the other threads within a warp.
(Warp is a 32-thread unit of execution in NVIDIA GPU devices.) The
shuffle instruction removes the need for loading neighbour values from
memory; each thread reads a single value only into a local register that

will be accessible to the neighbour threads via the shuffle operation. As
shown in Fig. 4, there are 32 threads in each warp, and there is an
overlap of two threads between every two warps. Except for the first and
last warps, each warp is designed to ignore the comparison operation for
the first and last thread, as these valued are examined by the second last
thread in the previous warp and the second thread in the following warp,
respectively. Using this warp-level overlap, the detection of extreme
points can be completed without any omission and at very high
efficiency.

After the detection of extreme points, we obtain the positions and
values of all extreme points in the projection signal. These positions are
the actual sample index values stored in a sparse vector. To make this
vector suitable for cubic spline interpolation, we need to compact this
position vector to a dense continuous sequence of location indexes.

The vector compaction step is illustrated in Fig. 5. During the
extreme point detection step, we generate an auxiliary flag vector to
identify the location of extreme points with a logical 1 value. Subse-
quently, the kernel function scanArray will perform a prefix sum oper-
ation on the flag vector and return the prefix sum result, i.e. the
corresponding positions of the extreme points in a compact vector. Using
this strategy, all parallel threads in the selectExtrema kernel function
can work independently, in parallel, using the extrema flag vector as the
predicate, the projection signal vector and the prefix sum result vector to
generate the compacted extreme point vector.

Since the first and last points of the signal do not have left or right
neighbours, respectively, it is not possible to determine whether these
points are extrema or not. These two boundary points are handled
separately by the kernel function setBoundary, which – in the current
implementation – uses the slope extension method as the boundary
condition.

3.5. Cubic spline interpolation

To calculate the upper and lower envelopes, we need to perform
cubic spline interpolation based on the detected extreme points using
the cubic spline function polynomial

Si(x) = ai + bix+ cix2 + dix3

With n + 1extreme points (xi,yi), there will be n gaps corresponding to n
cubic splines, each with four unknown coefficients (a,b,c,d), resulting in
4n unknowns that requires 4n equations.

The detected extreme points (spline control points) satisfy the spline

Fig. 11. Boxplot of Similarity Index values representing the difference between
the MATLAB and GPU implementations of the MEMD algorithm. Each IMF
category represents the distribution of the Similarity Index values of all chan-
nels for that IMF. Red lines represent median values.

Fig. 12. Execution time of our GPU implementation compared to [23] on an NVIDIA GTX 980 GPU card. Two (a 6 and a 16-channel) datasets with 1000 samples per
channel were used in both implementations using varying number of direction vectors.

Z. Wang and Z. Juhasz

Journal of Computational Science 74 (2023) 102180

12

function. Each extreme point must satisfy the two spline equations to its
left and right. The first and last points only satisfy the right and left hand
spline, respectively. As a result of these conditions, we obtain 2n equa-
tions. The next condition is continuity. The spline should be first and
second derivative continuous at each extreme point, which condition
will give us another 2(n − 1) equations. Now we have 4n − 2 equations,
and we are two equations away from solving the unknowns. The last two
missing equations are given by the boundary conditions. In our imple-
mentation, we have chosen a natural spline to interpolate on the first
and last points, having the second derivative at the first and last extreme
points set to 0. This gives us the last two equations and the system of
equations is now solvable.

Using a step size hi = xi+1 − xi, and the continuity condition mi =

S′′
i(xi), then under the boundary conditions of the natural spline, the

entire system of equations can be expressed as the following tridiagonal
matrix equation:
⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1 0 0 ⋯ 0
h0 2(h0 + h1) h1 0
0 h1 2(h1 + h2) h2 0
0 0 h2 2(h2 + h3) h3 ⋮
⋮

0 hn− 2 2(hn− 2 + hn− 1) hn− 1
0 ⋯ 0 0 1

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

m0
m1
m2
m3
⋮

mn

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

= 6 ∗

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0
y2 − y1

h1
−

y1 − y0

h0

y3 − y2

h2
−

y2 − y1

h1

y4 − y3

h3
−

y3 − y2

h2

⋮
yn − yn− 1

hn− 1
−

yn− 1 − yn− 2

hn− 2

0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

After we solve for m, the coefficients of each spline function can be
expressed as:

ai = yi

bi =
yi − yi

hi
−

hi

2
mi −

hi

6
(mi+1 − mi)

ci =
mi

2

di =
mi+1 − mi

6hi

Envelope interpolation in MEMD is a more complicated process than
in the traditional univariate EMD. The extreme points in the projected
signal will correspond to multivariate extreme points in the input signal
using points generated by backprojection with the location of the
extreme points in the projected signal. Fig. 6 shows a simple example for
explanation. There are three input channels and and certain number of
projected signals. We detected four four extreme point locations in one
of the projected signals, x0, x1, x2, x3, which are projected back to each

Table 4
The maximum number of data samples per channel the proposed implementation can process on the different test GPU cards.

Number of channels RTX 3070 mobile Titan XP Tesla V100

Direction vectors # Direction vectors # Direction vectors

64 128 256 64 128 256 64 128 256

32
64
128

78k 40k 20k 118k 60k 30k 164k 84k 42k
40k 20k 10k 60k 30k 14k 84k 42k 20k
20k 10k 4k 30k 14k 6k 42k 20k 10k

Fig. 13. 32-channel 64 direction vectors, up to 78k samples, MATLAB vs GPU
execution times.

Fig. 14. Speedup for 32-channel 64 direction vectors, up to 78k samples,
compared to MATLAB.

Fig. 15. 64-channel 128 direction vectors, up to 20k samples, MATLAB and
GPU execution times.

Z. Wang and Z. Juhasz

Journal of Computational Science 74 (2023) 102180

13

input signal to obtain signal values y0-y11.
Each multivariate extreme point is composed of three values ob-

tained for the give location with a lookup operation from the three input
channels (e.g. x0 –> y0, y4, y8). Next, cubic spline interpolation, outline
above, will be performed on each input channel. Note that each channel
will generate one tridiagonal matrix equation using the same coefficient
matrix as the other channels. This allows us to use a batch tridiagonal
solver in which many right hand side vectors represent the different
channels. For this we used the multi-right-hand tridiagonal system
solver function cusparseSgtsv2 of the cuSparse CUDA library. This
function uses the Parallel Cyclic Reduction [36] algorithm to solve the
equations in parallel instead of the commonly used sequential Thomas
algorithm.

Before solving the equations, the tridiagonal system of equation must
be generated for each direction vector. Our CUDA kernel tridiago-
nalSetup generates each row of the tridiagonal coefficient matrix based
on the extrema locations in the projected signal and one value of the
right-hand matrix.

Once the system of equations is solved for m, the kernel function
splineCoefficients will launch a number of threads equal to the number
of interpolating splines to compute the corresponding polynomial co-
efficients (a,b, c,d) and store them in the GPU memory.

The actual interpolation operation based on the computed poly-
nomial coefficients (a,b,c,d) is handled by the CUDA kernel interpolate.
Since the number of extreme points will decrease with each IMF itera-
tion, the number of values between extreme points that need to be
interpolated will also vary with each iteration. Therefore, in the kernel
function, we use a binary search to select the coefficients of the spline
function corresponding to each gap, and each thread is scheduled to
compute a single point in the interpolated spline.

After interpolating the multivariate upper and lower envelopes, the
mean multivariate envelope of the input signal is calculated, which after
subtracting it from the input signal will give us a potential IMF. This
process consists of two parts. First, for each direction vector, we calcu-
late the mean multivariate envelope from the multivariate upper and
lower envelopes. This step is handled by the kernel function aver-
ageUpperLower. Second, since each direction vector will have its own
corresponding mean multivariate envelope, we need to average these
mean multivariate envelopes for all direction vectors to obtain the final
mean multivariate envelope of the input signal. This step is performed
by the kernel function averageDirection. After this step, one candidate
IMF is generated by subtracting the multivariate average envelope from
the input signal, and a new iteration of MEMD algorithm will begin.

3.6. Data layout in memory

In heterogeneous accelerated computing systems, the memory of the
CPU and GPU are two independent subsystems that communicate with
each other via the PCI-e bus. Even the current state-of-the-art PCI-e
4.0 × 16 bus can only provide 32 GB/s bandwidth, which is still far
below the bandwidth of the GPU global memory (several hundred GB/
s). Consequently, data exchange between CPU and GPU memory is a
time-consuming operation which should be minimised to achieve high
efficiency. The ideal situation is to allocate GPU memory only once,
store all data in GPU memory and all operations are performed in GPU
memory without CPU interaction. In our parallel implementation of
MEMD, we allocate memory for all variables in GPU memory before the
computation starts, and the memory exchange between CPU and GPU is
limited to the copying the input signals and direction vectors to the GPU
and retrieving the final decomposition results. The allocation of memory
is mainly controlled by three size variables, namely the length of the
multivariate signal (SignalLength), the dimension of the multivariate
signal (SignalDim), and the number of direction vectors (NumDirVec-
tor). Table 2 lists the memory requirement of each variable and their use
in the GPU kernels.

4. Results

In this section, we first list the architectural details of GPU systems
we used for testing our implementation, then present the numerical
validation results using synthetic datasets. this is followed by perfor-
mance results using real high-density EEG datasets.

4.1. Test hardware

Different types of NVIDIA GPU cards were used in the testing process
to explore performance variation across architecture families and card
models. We selected different NVIDIA gaming and compute cards,

Fig. 16. Speedup for 64-channel 128 direction vectors, up to 20k samples
compared to MATLAB.

Fig. 17. 128-channel 256 direction vectors, up to 10k samples, MATLAB and
GPU execution times.

Fig. 18. Speedup for 128-channel 256 direction vectors, up to 10k samples
compared to MATLAB.

Z. Wang and Z. Juhasz

Journal of Computational Science 74 (2023) 102180

14

whose details are listed in Table 3. The now outdated GTX 980 was used
only to compare performance with the only known MEMD GPU imple-
mentation [23]. The Titan Xp and RTX 3070 were used both for devel-
opment and testing. The V100 card was only used for performance
measurement. The core count of the GPUs ranges between 2048 and
5120, while the performance varies from 4.98 to 16.69 TFlop/s (single
precision). For the MATLAB tests, we used an i7–9700 K CPU (8 cores,
3.60 GHz base frequency, 4.90 GHz turbo frequency) and MATLAB
r2019a.

4.2. Numerical validation

We used several synthetic datasets and real EEG measurements for
validating the correctness of our implementation. Some datasets were

used in order to compare our results with literature data while others
were used for quantitative tests and comparison with the reference
MATLAB implementations.

4.2.1. Synthetic Dataset 1
The first synthetic dataset used in the validation process was

described in [1] (also available online3) and contains 6, 12 and 16-chan-
nel multivariate data series. The hexavariate dataset was generated by
adding four different frequency sine waves (x1: f1 = 2 Hz, x2: f2 = 8 Hz,
x3: f3 = 16 Hz and x4: f4 = 32 Hz) and noise to different subsets of

Table 5
Relative contributions of the kernels to the overall execution time. Channel count is 32, number of direction vectors are 64.

Table 6
Relative contributions of the kernels to the overall execution time. Channel count is 128, number of direction vectors are 256.

3 https://www.commsp.ee.ic.ac.uk/~mandic/research/memd/
MEMD_Supplement.zip

Z. Wang and Z. Juhasz

https://www.commsp.ee.ic.ac.uk/~mandic/research/memd/MEMD_Supplement.zip
https://www.commsp.ee.ic.ac.uk/~mandic/research/memd/MEMD_Supplement.zip

Journal of Computational Science 74 (2023) 102180

15

channels so that x1 appears in Channels 1,2 and 4, x2 in Channels 1–3
and 5, x3 in all channels, x4 in Channels 1, 3–4 and 6, and noise in
Channels 1–3, making it suitable for mode alignment test. Since this
dataset was used as test data in [23], we will use primarily for perfor-
mance comparison but for visual inspection, the result of the MEMD
decomposition of this dataset obtained with our GPU implementation is
shown in Fig. 7. The top row contains the individual input signals of the
hexavariate dataset (Channels 1–6). The subsequent rows, from IMF
1–7, show the extracted oscillatory modes for each channel, starting
with the noise (IMF1–3) then the signal components.

Fig. 8 illustrates the decomposition result of the 16-channel synthetic
signal. The correct mode alignment (some channels showing a noise or
specific oscillatory mode while others showing none or negligible
components) is evident. Our implementation correctly identified the
noise and sine wave components common in multiple channels in all
three datasets and matched the results reported in [23].

4.2.2. Synthetic Dataset 2
The second synthetic dataset was created for testing the numerical

accuracy of our decomposition implementation. We generated a hex-
avariate dataset without added noise by adding five pure sine waves of
different frequencies (x1: f1 = 2 Hz, x2: f2 = 6 Hz, x3: f3 = 11 Hz and x4: f4
= 19 Hz, x5: f5 = 40 Hz) to different subsets of channels so that x1 ap-
pears in Channels 1–3, x2 in Channels 1–4, x3 in Channels 1–2 and 5, x4
in Channels 1–3 and 5–6, while x5 in Channels 1, 3–4 and 6.

4.2.2.1. Similarity index. To quantify the accuracy of the decomposi-
tion, we compared the original and decomposed signal components
using the Similarity Index metric ρ given as

ρi(xi(t), IMFi(t)) =
cov(xi(t), IMFi(t))

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
var(xi(t))

√ ̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
var(IMFi(t))

√

where cov() represents covariance of the input signal and the corre-
sponding IMF, var() represents the variance of the input signal and the
IMF, respectively. A ρ = 1 value represents identical input signal
component and IMF, i.e. perfect decomposition. Fig. 9 shows the result
of the decomposition of this dataset including the Similarity Index
values above each IMF component. The lowest value of ρ is 0.971, while
the majority similarity index values are above 0.99.

4.2.3. EEG dataset
To compare our decomposition results with the MEMD MATLAB

implementation, we selected a real EEG dataset from the samples pro-
vided with the EEGLAB Toolbox [37]. The selected dataset consists of 32
channels each with 30,504 samples (sampling frequency is 512 Hz). In
Fig. 10, we show the result of the signal decomposition of Channel 4 of
the dataset from t = 1–5 s. The different oscillation frequencies, ampli-
tude and frequency modulations are clearly visible in the different IMFs.
The results were compared with the EMDLAB MEMD MATLAB imple-
mentation [24]. The resulting similarity index values of the 32 channels
for each IMF are plotted in Fig. 11. The difference, which is due to dif-
ferences in floating point arithmetic instruction implementations on the
CPU and GPU and slight differences in extrema detection boundary
conditions, is less than 1.8 % on average.

Fig. 19. Execution timeline of one iteration of the IMF computation look of the MEMD algorithm.

Fig. 20. The Roofline performance model of the RTX 3070 mobile GPU
showing the performance positions of the main kernels of the implementation.

Z. Wang and Z. Juhasz

Journal of Computational Science 74 (2023) 102180

16

4.3. Performance results

In this section, we present performance results using several metrics
that characterise the performance of GPU implementations. For end
users, wall clock time is the most important measure along with time
reduction level (speedup) when compared to the implementation they
hope to replace. For developers, additional measures, such as hardware
efficiency, achieved peak compute performance, arithmetic intensity are
important, as they characterise the quality of the implementation and
the extent to how much the GPU card is utilised during the program
execution.

We measured and compared the execution time of our GPU imple-
mentation on different GPU cards and compared it with MATLAB run-
times. We also provide speedup results indicating the speed advantage of
the GPU implementation over the MATLAB one. Note, however, that
GPU speedup (S = TCPU/TGPU) can easily become a misleading metric as
it is often based on inefficient CPU implementations, might ignore
programming language and multi-core CPU execution effects.

First, we compared the performance of our implementation to the
only MEMD GPU implementation found in the literature [23]. Since
several new GPU architecture generations have appeared since the date
of publication of Mujahid et al.’s paper, to compare the implementation
efficiency of our implementation objectively, we had to execute our
program on the very same type of card (GTX 980) that was used in [23].
The execution time obtained this way with our version on two datasets
(6 and 16 channels, signal length = 1000 samples) from Dataset A is
shown in Fig. 12. On average, our implementation achieves a 1.69x
speedup in execution time.

Next, the MATLAB MEMD execution time was compared with our
proposed GPU implementation executed on various GPU cards. The
implementations were performed by varying the number of input
channels, the number of samples per channel, and the number of di-
rection vectors. The hardware details of the test systems are listed in
Table 3. Since the memory size was different on the different GPU cards,
we had to use slightly different problem sizes on each system. Table 4
shows the maximum number of input samples each GPU can process for
different channel count and projection vector size parameter
combinations.

The execution time and speedup results of the different test cases (32,
64 and 128 EEG channels) are shown in Figs. 13–18. The execution time
figures show the MATLAB and three GPU execution time curves as a
function of sample size. The Speedup figures show the speedup values
calculated from the GPU runtime values and the MATLAB MEMD
execution time. The MATLAB script was executed on an 8-core Intel
i7–9700 K CPU.

The execution time results show that for all channel number cases the
GPU execution time was below or around 10 s for all signal length. The
speedup values show a positive correlation with signal length that im-
plies that the more data is fed into the GPU the more efficient it becomes
during execution due to the increased number of threads ready for
execution. This demonstrably helps in hiding memory data transfer la-
tencies. The V100 speedup values – in the range of 180–430x – are an
order of magnitude higher than previously reported ones.

4.4. Performance analysis

Here we provide a summary of the performance evaluation of our
MEMD implementation. We profiled the code to identify potential per-
formance bottlenecks and see the relative weight of each GPU kernel
during program execution. Table 5 shows the results we obtained with
the 32-channel EEG dataset (64 direction vectors) on the V100 card
while varying the input signal length. Each column shows the relative
contribution of the kernels to the execution time for the signal length of
the column. Kernels with names set in italic are part of the tridiagonal
solver implementation cusparseSgtsv2_nopivot() of the NVIDIA cuS-
parse library. The other kernels were developed by us. To help visualise

performance trends, we used green and blue colour bars to show the
change of the relative contributions of the cuSparse kernels and ours,
respectively. The last two rows of the table show the total relative
contribution of the cuSparse library and our custom kernels.

Table 6 shows the profiling results obtained with a 128-channel EEG
dataset (256 direction vectors), also executed on a V100 GPU. Both
Table 5 and Table 6 show that the tridiagonal solver dominates program
execution time. In the 32-channel dataset, the relative weight of the
solver decreases with increasing signal lengths, largely due to the
increasing execution time of our spline interpolation kernel ‘interpo-
late’. At around 80k sample size, the time spent in the solver and in our
other kernels becomes equal, after which our custom kernels tend to be
more dominant in the execution time profile. In the 128-channel case,
when the number of direction vectors are quadrupled, the memory
limits the execution for up to 12k samples per channel, only. In this input
size range, the cuSparse solver becomes an even more important per-
formance limiting factor, with larger than 72 % share of the execution
time. The execution time of the interpolation kernel increases here as
well but its relative weight is much less than in the 32-channel case.

The GPU utilisation of our most critical kernel ‘interpolate’ reaches
54 % compute and 45 % memory utilisation. Its floating point perfor-
mance is relatively modest (64 GFlop/s) as most operations involve
integer arithmetic, but the integer performance is over 1600 GOp/s. The
execution timeline of one iteration of the MEMD program is shown in
Fig. 19. The timeline data was obtained on a Titan Xp card. At the
bottom of the picture, the ‘Device %’ row illustrates the utilisation of the
GPU is nearly 100 % throughout the program with very little idle time
periods (gaps) in the timeline.

We performed a Roofline [38] performance analysis that showed
that the kernels (thus the entire program) in general are memory bound
as they perform relatively few floating point arithmetic instructions
compared to the data movement operations. The instruction-to-byte
ratio of modern GPUs are typically between 14 and 30, hence only
kernels having an Arithmetic Intensity value of 14 of higher can achieve
close to peak compute performance. The arithmetic intensity of the
kernels in our implementation are in the range of 0.1–2.2 and thus are
limited by the memory bandwidth of the GPU cards. Fig. 20 illustrates
the performance of the most critical kernels of our implementation on
the roofline model of the RTX 3070 mobile GPU. Kernels marked with
green boxes designate the kernels implementing the cuSparse tridiago-
nal solver. Blue circles mark custom kernels we developed for this
implementation. The figure shows that our kernels reach close to theo-
retical performance (lie on or close to the global memory performance
boundary line), while the NVIDIA kernels perform relatively poorly.
Unfortunately, the implementation is proprietary; hence, we did not
have an opportunity to perform further performance optimisation on
them.

Our implementation proved to be correct and efficient, executing the
MEMD algorithm within 1.2–17 s for up to 128 channels. The maximum
sample length on a V100 GPU for 128 channels is 10k that may represent
5–40 s of measurement depending on the selected sampling frequency
(256–2048 Hz). This is typically sufficient for epoch processing in Event
Related Potential studies or for analysing windowed data. When using
lower sampling frequencies (256 or 512 Hz), our processing time is
shorter than the length of the data window which offers the possibility of
using it in real-time and/or clinical applications.

5. Conclusions

In this paper, we described an efficient GPU implementation of the
MEMD algorithm implemented in CUDA. Multivariate Empirical Mode
Decomposition enables the accurate extraction of AM/FM modulated
oscillatory modes of multi-channel high-density EEG/MEG datasets
without the presence of the mode-alignment problem. This can open
new opportunities in the deeper understanding of the brain processes
underlying the execution of cognitive tasks or finding biomarkers for the

Z. Wang and Z. Juhasz

Journal of Computational Science 74 (2023) 102180

17

early diagnosis of neurodegenerative diseases.
Our implementation was validated and tested for performance and

correctness on different hardware platforms using a varying set of
parameter values of channel count, direction vectors and signal sample
size. The final version achieved a 180x to 430x speedup dependent on
the length of the input signal and the GPU used with high decomposition
accuracy. This level of performance can reduce data analysis execution
times from days to minutes or from hours to seconds. Further perfor-
mance increase can be expected from the Ampere and Hopper archi-
tectures and from multi-GPU extensions that are among our future plans.
The source code of our implementation is available under the MIT Open
Source license for the interested readers for use in applications or further
improvements at the following URL: https://github.com/EEGLab-Pann
on/MEMD-GPU.

CRediT authorship contribution statement

Zeyu Wang: Conceptualization, Methodology, Software, Validation,
Investigation, Data curation, Writing – original draft, Visualization.
Zoltan Juhasz: Conceptualization, Methodology, Resources, Writing –
review & editing, Supervision, Project administration, Funding
acquisition.

Declaration of Competing Interest

The authors declare that they have no known competing financial
interests or personal relationships that could have appeared to influence
the work reported in this paper.

Data availability

Data will be made available on request.

Acknowledgements

This research was partially supported by the Ministry of Innovation
and Technology of Hungary from the National Research, Development
and Innovation Fund (Project no. 2019-2.1.11-TÉT-2019-00069),
financed under the 2019-2.1.11-TÉT funding scheme and the European
Union’s Horizon 2020 Research and Innovation program under Grant
Agreement No 101008468 (SLICES-SC). The support of the NVIDIA GPU
Grant Program is also gratefully acknowledged.

References

[1] N. Rehman, D.P. Mandic, Multivariate empirical mode decomposition, Proc. R. Soc.
A Math. Phys. Eng. Sci. 466 (2010) 1291–1302, https://doi.org/10.1098/
rspa.2009.0502.

[2] N.E. Huang, Z. Shen, S.R. Long, M.C. Wu, H.H. Snin, Q. Zheng, N.C. Yen, C.C. Tung,
H.H. Liu, The empirical mode decomposition and the Hilbert spectrum for
nonlinear and non-stationary time series analysis, Proc. R. Soc. A Math. Phys. Eng.
Sci. 454 (1998) 903–995, https://doi.org/10.1098/rspa.1998.0193.

[3] G. Buzsaki, A. Draguhn, Neuronal oscillations in cortical networks, Science 304
(2004) 1926–1929, https://doi.org/10.1126/science.1099745.

[4] G. Wang, X.Y. Chen, F.L. Qiao, Z. Wu, N.E. Huang, On intrinsic mode function,
Adv. Adapt. Data Anal. 2 (2010) 277–293, https://doi.org/10.1142/
S1793536910000549.

[5] A.R. Hassan, A. Subasi, Automatic identification of epileptic seizures from EEG
signals using linear programming boosting, Comput. Methods Prog. Biomed. 136
(2016) 65–77, https://doi.org/10.1016/j.cmpb.2016.08.013.

[6] P. Shahsavari Baboukani, G. Azemi, B. Boashash, P. Colditz, A. Omidvarnia,
A novel multivariate phase synchrony measure: application to multichannel
newborn EEG analysis, Digit. Signal Process. A Rev. J. 84 (2019) 59–68, https://
doi.org/10.1016/j.dsp.2018.08.019.

[7] H. Liang, S.L. Bressler, E.A. Buffalo, R. Desimone, P. Fries, Empirical mode
decomposition of field potentials from macaque V4 in visual spatial attention, Biol.
Cybern. 92 (2005) 380–392, https://doi.org/10.1007/s00422-005-0566-y.

[8] L. Wang, G. Xu, S. Yang, W. Yan, Application of Hilbert-Huang Transform for the
Study of Motor Imagery Tasks, (2008) 3848–3851.

[9] S. Aviyente, A. Tootell, E.M. Bernat, Time-frequency phase-synchrony approaches
with ERPs, Int. J. Psychophysiol. 111 (2017) 88–97, https://doi.org/10.1016/j.
ijpsycho.2016.11.006.

[10] W. Zhaohua, N.E. Huang, Ensemble empirical mode decomposition: a noise-
assisted data analysis method, Biomed. Tech. 55 (2010) 193–201.

[11] M.A. Colominas, G. Schlotthauer, M.E. Torres, Improved complete ensemble EMD:
a suitable tool for biomedical signal processing, Biomed. Signal. Process. Control.
14 (2014) 19–29, https://doi.org/10.1016/j.bspc.2014.06.009.

[12] A. Bruns, Fourier-, Hilbert- and wavelet-based signal analysis: are they really
different approaches? J. Neurosci. Methods 137 (2004) 321–332, https://doi.org/
10.1016/j.jneumeth.2004.03.002.

[13] O.A. Rosso, L. Romanelli, S. Blanco, L. Romanelli, R.Q. Quiroga, S. Blanco, R.
Q. Quiroga, H. Garcia, O.A. Rosso, Stationarity of the EEG Series, IEEE Eng. Med.
Biol. Mag. 14 (1995) 395–399, https://doi.org/10.1109/51.395321.

[14] A. Ahrabian, D. Looney, L. Stanković, D.P. Mandic, Synchrosqueezing-based time-
frequency analysis of multivariate data, Signal Process. 106 (2015) 331–341,
https://doi.org/10.1016/j.sigpro.2014.08.010.

[15] C. Li, M. Liang, A generalized synchrosqueezing transform for enhancing signal
time–frequency representation, Signal. Process. 92 (2012) 2264–2274, https://doi.
org/10.1016/J.SIGPRO.2012.02.019.

[16] F. Auger, P. Flandrin, Y.T. Lin, S. McLaughlin, S. Meignen, T. Oberlin, H.T. Wu,
Time-frequency reassignment and synchrosqueezing: an overview, IEEE Signal.
Process. Mag. 30 (2013) 32–41, https://doi.org/10.1109/MSP.2013.2265316.

[17] I. Daubechies, J. Lu, H.T. Wu, Synchrosqueezed wavelet transforms: an empirical
mode decomposition-like tool, Appl. Comput. Harmon. Anal. 30 (2011) 243–261,
https://doi.org/10.1016/j.acha.2010.08.002.

[18] K. Dragomiretskiy, D. Zosso, Variational mode decomposition, IEEE Trans. Signal.
Process. 62 (2014) 531–544, https://doi.org/10.1109/TSP.2013.2288675.

[19] J. Harmouche, D. Fourer, F. Auger, P. Borgnat, P. Flandrin, The sliding singular
spectrum analysis: a data-driven nonstationary signal decomposition tool, IEEE
Trans. Signal. Process. 66 (2018) 251–263, https://doi.org/10.1109/
TSP.2017.2752720.

[20] Z. Wu, N.E. Huang, On the filtering properties of the empirical mode
decomposition, Adv. Adapt. Data Anal. 2 (2010) 397–414, https://doi.org/
10.1142/S1793536910000604.

[21] D.P. Mandic, N. Ur Rehman, Z. Wu, N.E. Huang, Empirical mode decomposition-
based time-frequency analysis of multivariate signals: The power of adaptive data
analysis, IEEE Signal. Process. Mag. 30 (2013) 74–86, https://doi.org/10.1109/
MSP.2013.2267931.

[22] Z. Wu, N.E. Huang, Ensemble empirical mode decomposition: a noise-assisted data
analysis method, Adv. Adapt. Data Anal. 1 (2009) 1–41, https://doi.org/10.1142/
S1793536909000047.

[23] T. Mujahid, A.U. Rahman, M.M. Khan, GPU-accelerated multivariate empirical
mode decomposition for massive neural data processing, IEEE Access 5 (2017)
8691–8701, https://doi.org/10.1109/ACCESS.2017.2705136.

[24] K. Al-Subari, S. Al-Baddai, A.M. Tomé, M. Goldhacker, R. Faltermeier, E.W. Lang,
EMDLAB: a toolbox for analysis of single-trial EEG dynamics using empirical mode
decomposition, J. Neurosci. Methods 253 (2015) 193–205, https://doi.org/
10.1016/j.jneumeth.2015.06.020.

[25] A. Delorme, S. Makeig, EEGLAB: an open source toolbox for analysis of single-trial
EEG dynamics including independent component analysis, J. Neurosci. Methods
134 (2004) 9–21, https://doi.org/10.1016/j.jneumeth.2003.10.009.

[26] P.J.J. Luukko, J. Helske, E. Räsänen, Introducing libeemd: a program package for
performing the ensemble empirical mode decomposition, Comput. Stat. 31 (2016)
545–557, https://doi.org/10.1007/s00180-015-0603-9.

[27] P. Waskito, S. Miwa, Y. Mitsukura, H. Nakajo, Parallelizing Hilbert-Huang
transform on a GPU, in: Proceedings of the 2010 First Int. Conf. Netw. Comput.
ICNC 2010. (2010) 184–190. 〈https://doi.org/10.1109/IC-NC.2010.44〉.

[28] P. Waskito, S. Miwa, Y. Mitsukura, H. Nakajo, Evaluation of GPU-based empirical
mode decomposition for off-line analysis, IEICE Trans. Inf. Syst. E94-D (2011)
2328–2337, https://doi.org/10.1587/transinf.E94.D.2328.

[29] J.D. Bonita, L.C.C. Ambolode, B.M. Rosenberg, C.J. Cellucci, T.A.A. Watanabe, P.
E. Rapp, A.M. Albano, Time domain measures of inter-channel EEG correlations: A
comparison of linear, nonparametric and nonlinear measures, Cogn. Neurodyn 8
(2014) 1–15, https://doi.org/10.1007/s11571-013-9267-8.

[30] K.P.Y. Huang, C.H.P. Wen, H. Chiueh, Flexible parallelized empirical mode
decomposition in CUDA for hilbert huang transform, in: Proceedings of the
Sixteenth IEEE Int. Conf. High Perform. Comput. Commun. HPCC 2014, Eleventh
IEEE Int. Conf. Embed. Softw. Syst. ICESS 2014 Sixth Int. Symp. Cybersp. Saf.
Secur. (2014) 1125–1133. 〈https://doi.org/10.1109/HPCC.2014.166〉.

[31] Y. Wang, H. Ren, M. Huang, Y. Chang, GPU-based Ensemble Empirical Mode
Decomposition Approach to Spectrum Discrimination, Department of Computer
Science and Information Engineering, National Central University, Taiwan Center
for Space and Remote Sensing Research, National Central Universit, (2012) 3–6.

[32] H. Ren, Y.L. Wang, M.Y. Huang, Y.L. Chang, H.M. Kao, Ensemble empirical mode
decomposition parameters optimization for spectral distance measurement in
hyperspectral remote sensing data, Remote Sens. 6 (2014) 2069–2083, https://doi.
org/10.3390/rs6032069.

[33] D. Chen, D. Li, M. Xiong, H. Bao, X. Li, GPGPU-aided ensemble empirical-mode
decomposition for EEG analysis during anesthesia, IEEE Trans. Inf. Technol.
Biomed. 14 (2010) 1417–1427, https://doi.org/10.1109/TITB.2010.2072963.

[34] Z. Wu, N.E. Huang, X. Chen, The multi-dimensional ensemble empirical mode
decomposition method, Adv. Adapt. Data Anal. 1 (2009) 339–372, https://doi.org/
10.1142/S1793536909000187.

[35] J.H. Halton, Algorithm 247: radical-inverse quasi-random point sequence,
Commun. ACM 7 (1964) 701–702, https://doi.org/10.1145/355588.365104.

Z. Wang and Z. Juhasz

https://github.com/EEGLab-Pannon/MEMD-GPU
https://github.com/EEGLab-Pannon/MEMD-GPU
https://doi.org/10.1098/rspa.2009.0502
https://doi.org/10.1098/rspa.2009.0502
https://doi.org/10.1098/rspa.1998.0193
https://doi.org/10.1126/science.1099745
https://doi.org/10.1142/S1793536910000549
https://doi.org/10.1142/S1793536910000549
https://doi.org/10.1016/j.cmpb.2016.08.013
https://doi.org/10.1016/j.dsp.2018.08.019
https://doi.org/10.1016/j.dsp.2018.08.019
https://doi.org/10.1007/s00422-005-0566-y
https://doi.org/10.1016/j.ijpsycho.2016.11.006
https://doi.org/10.1016/j.ijpsycho.2016.11.006
http://refhub.elsevier.com/S1877-7503(23)00240-5/sbref9
http://refhub.elsevier.com/S1877-7503(23)00240-5/sbref9
https://doi.org/10.1016/j.bspc.2014.06.009
https://doi.org/10.1016/j.jneumeth.2004.03.002
https://doi.org/10.1016/j.jneumeth.2004.03.002
https://doi.org/10.1109/51.395321
https://doi.org/10.1016/j.sigpro.2014.08.010
https://doi.org/10.1016/J.SIGPRO.2012.02.019
https://doi.org/10.1016/J.SIGPRO.2012.02.019
https://doi.org/10.1109/MSP.2013.2265316
https://doi.org/10.1016/j.acha.2010.08.002
https://doi.org/10.1109/TSP.2013.2288675
https://doi.org/10.1109/TSP.2017.2752720
https://doi.org/10.1109/TSP.2017.2752720
https://doi.org/10.1142/S1793536910000604
https://doi.org/10.1142/S1793536910000604
https://doi.org/10.1109/MSP.2013.2267931
https://doi.org/10.1109/MSP.2013.2267931
https://doi.org/10.1142/S1793536909000047
https://doi.org/10.1142/S1793536909000047
https://doi.org/10.1109/ACCESS.2017.2705136
https://doi.org/10.1016/j.jneumeth.2015.06.020
https://doi.org/10.1016/j.jneumeth.2015.06.020
https://doi.org/10.1016/j.jneumeth.2003.10.009
https://doi.org/10.1007/s00180-015-0603-9
https://doi.org/10.1109/IC-NC.2010.44
https://doi.org/10.1587/transinf.E94.D.2328
https://doi.org/10.1007/s11571-013-9267-8
https://doi.org/10.1109/HPCC.2014.166
https://doi.org/10.3390/rs6032069
https://doi.org/10.3390/rs6032069
https://doi.org/10.1109/TITB.2010.2072963
https://doi.org/10.1142/S1793536909000187
https://doi.org/10.1142/S1793536909000187
https://doi.org/10.1145/355588.365104

Journal of Computational Science 74 (2023) 102180

18

[36] Y. Zhang, J. Cohen, J.D. Owens, Fast tridiagonal solvers on the GPU, ACM Sigplan
Not. 45 (2010) 127, https://doi.org/10.1145/1837853.1693472.

[37] A. Delorme, S. Makeig, EEGLAB: an open source toolbox for analysis of single-trial
EEG dynamics including independent component analysis, J. Neurosci. Methods
134 (2004) 9–21, https://doi.org/10.1016/j.jneumeth.2003.10.009.

[38] S. Williams, A. Waterman, D. Patterson, Roofline: an insightful visual performance
model for multicore architectures, Commun. ACM 52 (2009) 65, https://doi.org/
10.1145/1498765.1498785.

Zeyu Wang (BEng in Elect. Eng. 2018, MEng in Biomedical
Eng. 2021, Shenyang University of Technology, P.R. China) is
currently a PhD student in the Faculty of Information Tech-
nology of the University of Pannonia, Hungary. His main
research interests include GPU computing, EEG signal pro-
cessing and data analysis, signal decomposition methods and
machine learning algorithms. In his PhD research he studies
EEG signal decomposition methods and their efficient, high-
performance GPU implementations.

Zoltan Juhasz (MEng in Elect. Eng. 1989, Ph.D. in Comp. Sci.
1996, Budapest University of Technology) is an Associate
Professor at the University of Pannonia in Hungary. He also
worked at the Queen’s University of Belfast and the University
of Exeter. He teaches the Java Programming, Parallel Pro-
gramming and Cloud Programming at BSc and MSc levels. His
research interests include parallel and distributed computa-
tions from instruction level parallelism to large scale grid and
cloud-HPC systems, GPU-based scientific computing, medical
signal processing, human-computer interaction, and visuali-
zation. He was the principal investigator of several national
research projects, participated in several international projects,
and received equipment grants from Sun Microsystems and

NVIDIA Inc. He also participated in several industrial R&D projects. His results are pub-
lished in over 100 refereed research papers. He has served on the program committee of
numerous conferences and works as a reviewer for several scientific journals.

Z. Wang and Z. Juhasz

https://doi.org/10.1145/1837853.1693472
https://doi.org/10.1016/j.jneumeth.2003.10.009
https://doi.org/10.1145/1498765.1498785
https://doi.org/10.1145/1498765.1498785

	Efficient GPU implementation of the multivariate empirical mode decomposition algorithm
	1 Introduction
	2 Related work
	2.1 Empirical mode decomposition
	2.2 Improvements of the EMD algorithm
	2.3 Multivariate empirical mode decomposition
	2.4 Sequential and GPU implementations

	3 Methods
	3.1 Parallel design
	3.2 Pre-processing
	3.3 Signal projection to direction vectors
	3.4 Extrema detection
	3.5 Cubic spline interpolation
	3.6 Data layout in memory

	4 Results
	4.1 Test hardware
	4.2 Numerical validation
	4.2.1 Synthetic Dataset 1
	4.2.2 Synthetic Dataset 2
	4.2.2.1 Similarity index

	4.2.3 EEG dataset

	4.3 Performance results
	4.4 Performance analysis

	5 Conclusions
	CRediT authorship contribution statement
	Declaration of Competing Interest
	Data availability
	Acknowledgements
	References

