
Experimental Evaluation of ML Models for
Dynamic VNF Autoscaling

Vasileios Zalokostas-Diplas⋆, Nikos Makris⋆†, Virgilios Passas⋆† and Thanasis Korakis⋆†
⋆Dept. of Electrical and Computer Engineering, University of Thessaly, Greece

†Centre for Research and Technology Hellas, CERTH, Greece
Email: vzalokost@uth.gr, nimakris@uth.gr, vipassas@uth.gr, korakis@uth.gr

Abstract—Network Functions Virtualization (NFV) is a key
aspect deeply integrated in the latest 5G networks, allowing
for the provisioning of elastic resources that adapt in a flexible
manner based on the overall network demand. The adoption
of NFV architectures is empowered through the evolution of
cloud-native and hypervisor tools to support service monitoring,
and orchestrate the appropriate decisions for provisioning the
scale of the network. Such decisions may directly impact the
overall quality of service and experience for users, as well as
the energy consumption that the resources use. To this aim,
machine learning (ML) - driven optimization for these decisions,
relying on inferring the values of future monitored metrics,
can assist in deciding proactively on the network scale. In this
work, we employ three different candidate solutions (statistical,
tree- and CNN-based) for determining the scale of network
functions deployed within a cluster of resources, subject to the
user demand. We compare and evaluate the different schemes in
a real testbed environment, and discuss the benefits of ML-driven
optimizations against existing state-of-the-art approaches.

I. INTRODUCTION

Since their introduction, 5G networks are becoming the
paradigm for the wide adoption of network softwarization,
capitalizing on their unprecedented flexibility and reconfig-
uration. Network Functions Virtualization (NFV) has been a
key technology for reducing CAPEX and OPEX cost for in-
frastructure owners, enhancing flexibility and scalability of the
deployed functions and services. NFV, alongside with the net-
work programmability offered by several novel interfaces (e.g.
O-RAN [1], 3GPP E2 interface [2]), allow for the dynamic
reconfiguration of the network, enabling the services/functions
to adapt dynamically based on the network load that they
are receiving. For example, network deployments might scale-
in during low utilization periods or scale-out during peak
hours, resulting in higher energy efficiency, rather than over-
provisioning a single function for meeting the peak demand.

Nevertheless, determining the optimal point for triggering
such decisions is not straightforward. They can be widely
categorized in either reactive or proactive decisions, where
in the former they are taken once a monitored metric value
reaches a certain threshold, or in the latter case based on
predicting near-future values of the metric. For the case of
proactive decisions, Machine Learning (ML) approaches can

The research leading to these results has received funding from the
European Horizon 2020 Programme for research, technological development
and demonstration under Grant Agreement Number No 101008468 (H2020
SLICES-SC). The European Union and its agencies are not liable or otherwise
responsible for the contents of this document; its content reflects the view of
its authors only.

be beneficial for forecasting values of monitored metrics [3], in
order to reflect the future network status, based on historical
patterns. Hence, the ML approach selection for forecasting
network metrics can highly affect the decisions.

In this work, we attempt to shed light on the selection of
the ML approach for predicting values that affect the scaling
decisions for deployed VNFs. We experimentally compare
three different candidate approaches for predicting monitored
metrics from deployed network functions, that reveal the true
network resource demand. The approaches that we evaluate are
based on the state-of-the-art algorithms for either statistical
based models i.e. ARIMA, tree-based approaches with the
XGBoost method, or CNN based models with LSTM. We target
the scaling process that is integrated in orchestration tools for
cloud-native functions. In this work, we extend the scaling
capabilities offered by the Kubernetes (K8s) orchestrator, to-
wards proactively determining the network resource demand in
the near future, and appropriately scale the deployed network
functions. The approach can easily extend to several other
virtualized services that can be managed in a similar manner,
e.g. the service-based 5G Core Network. Our approach is
evaluated experimentally in a cluster of nodes, while the
network resource demand is emulated using an open-source
dataset [4] which includes traffic from real network users.

The rest of the paper is organized as follows. In Section
II we provide details on relevant literature. In Section III we
describe the system model and our applied optimizations in
the ML modes. In Section IV we provide our experimental
findings, and in Section V we conclude our work and present
our future directions.

II. RELATED WORK

The transition of the networks to use virtualization, through
the execution of each dedicated function as a VNF, has added
up to the overall flexibility for network management. This
has allowed several novel approaches to emerge, allowing
the network to scale [5] based on monitored target metrics.
The most widely used approach is the implementation by the
Kubernetes orchestrator, which is able through the Horizontal
Pod Autoscaler, to spawn multiple replicas of the same service
to meet the demand. Nevetheless, this process depends on
monitored metrics, and is a reactive solution, spawning the
replicas as soon as a target metric is reached.

As the data monitored from such tools usually include
time as a parameter, this creates space for the application

2022 IEEE Conference on Standards for Communications and Networking (CSCN)

978-1-6654-7621-8/22/$31.00 ©2022 IEEE 157

20
22

 IE
EE

 C
on

fe
re

nc
e

on
 S

ta
nd

ar
ds

 fo
r C

om
m

un
ic

at
io

ns
 a

nd
 N

et
w

or
ki

ng
 (C

SC
N

) |
 9

78
-1

-6
65

4-
76

21
-8

/2
2/

$3
1.

00
 ©

20
22

 IE
EE

 |
D

O
I:

10
.1

10
9/

C
SC

N
57

02
3.

20
22

.1
00

51
11

2

Authorized licensed use limited to: University of Thessaly. Downloaded on December 08,2023 at 11:14:48 UTC from IEEE Xplore. Restrictions apply.

of Machine Learning (ML) approaches towards predicting
their future values [3] or network malfunctions [6]. Several
works take advantage of this, and present their own ap-
proach. For example, in [7] the authors present their own
autoscaling algorithm that tries to balance the tradeoff between
performance and operational costs. Their results show that
the proposed algorithm reduces operation costs, bound to the
maximum latency allowed for the end users accessing the
deployed services. In [8], authors evaluate through simulations
several deep learning models, both centralized and federated
approaches, that can perform horizontal and vertical autoscal-
ing in multi-domain networks. They model the autoscaling
problem as a time series forecasting problem that predicts the
future number of VNF instances based on the expected traffic
demand. Their contributions feature the evaluation of Feed
Forward Neural Networks, Long Short Term Memory (LSTM)
networks, and Convolutional Neural Networks - LSTM (CNN-
LSTM). Authors in [9] compare three different types of Deep
Reinforcement Learning in order to determine when their
functions should be scaled. They propose and compare a Deep
Reinforcement Learning (DRL) agent, a classical Proportional-
Integral-Derivative (PID) controller, and a Threshold (THD)-
based algorithm for determining the amount of VNF instances
to fulfill service latency requirements without knowing or
predicting the expected demand. Similarly, in [10], authors
investigate the use of ML techniques to estimate VNFs needs
in term of CPU as a function of the traffic they will process.
In this work, they use a Support Vector Regression (SVR)
approach. In work [11], authors develop their own scheme for
flow migration, when autoscaling the deployed functions.

Other approaches in related work include [12], where
ML is used for resolving the placement problem for VNFs.
The authors use a Deep Deterministic Policy Gradient Re-
inforcement Learning algorithm, to fully automate the Vir-
tual Network Functions deployment process between edge
and cloud network nodes. In [13] authors present a ML
methodology for generating labeled training data that reflects
temporal dynamics on a deployed network, and determines
the optimal topology in WAN and mobile edge computing
environments. Finally in [14], authors use a virtual network
function-forwarding graph (VNF-FG) to combat the problem
of dynamic VNF allocation, while considering VNF migration.

In this work, we extend the scaling capabilities offered
by the K8s orchestrator, towards proactively determining the
network resource demand in the near future, by employing
three different ML approaches. Our goal is to determine which
one of them performs better for our case, and to eventually
scale the deployed network functions towards ensuring that
the overall network will be energy efficient.

III. SYSTEM ARCHITECTURE AND MODEL

As the base of our development, we use the Kubernetes
orchestrator, that allows scaling of the deployed network func-
tions. Kubernetes (K8s) [15] is part of the Cloud Native Com-
puting Foundation (CNCF) which supports the development
of shared networking standards in cloud data management

software. It is an open-source system for automating deploy-
ment, scaling and management of containerized applications
and groups of containers that make up an application into
logical units for easy management and discovery.

K8s empowers high availability and scalability through
various automatic scaling mechanisms. Autoscaling allows
the cluster to dynamically adjust to demand without the
intervention from individuals in charge of operating the cluster.
Without it, the developers must manually provision resources
every time conditions change, and it is less likely to be
operating with optimal resource utilization and cloud spending.
Three types of autoscaling are supported in the K8s ecosystem:

• Cluster Autoscaler (CA) that increases or decreases the
size of a cluster by simply adding or removing nodes.

• Horizontal Pod Autoscaler (HPA) that automatically
scales up/down the number of resource units, called Pods.

• Vertical Pod Autoscaler (VPA) that dynamically modifies
the attributed resources like CPU and RAM of each node
in the cluster.

In this work, we focus on the horizontal scaling case, and
compare our solution with the off-the-shelf K8s HPA.

A crucial part for managing the deployed workloads is
monitoring of different metrics from the deployed functions
that reflect the true load under which the functions are placed.
Towards integrating our proposed approach with existing func-
tionalities provided by K8s, we adopt the Prometheus moni-
toring and alerting toolkit [16]. Prometheus collects and stores
metrics from either host nodes (bare metal) or deployed work-
loads (containers) as time series data i.e., metrics are stored
with a timestamp of the recorded time, alongside optional
key-value pairs. Prometheus integrates with K8s through the
prometheus-adapter extension, able to serve metrics through
the K8s API. Therefore, Prometheus collected metrics can be
leveraged for several operations within K8s, such as scaling
decisions for the autoscaler.

The off-the-shelf autoscaler uses default memory or CPU
consumption metrics, that upon reaching a certain target
metric, the scaling process is triggered. Through Prometheus
and the respective adapter, the scaling process can extend to
other monitored metrics. For example, in the case of a web
server, incoming requests can be appropriately monitored, and
scaling decisions can be taken using them as target metrics.

In this paper, we are focusing on the Horizontal’s Pods
Autoscaler functionality which scales the number of pods
based on a custom specific metric. The Horizontal Pod Au-
toscaler is implemented as a Kubernetes API resource and
a controller. The resource determines the behavior of the
controller. We extend the autoscaler functionality accordingly,
in order to forecast the evolution of the monitored metrics
in the future, and appropriately scale the deployment towards
ensuring energy savings for the infrastructure. The developed
controller adjusts the number of replicas (identical instances
of a pod) based on the observed metrics to the target specified
by the developers. Metrics are fetched using the Kubernetes
resource metrics API or the custom metrics API. The second
type of API was used since the Prometheus metrics are served

2022 IEEE Conference on Standards for Communications and Networking (CSCN)

158
Authorized licensed use limited to: University of Thessaly. Downloaded on December 08,2023 at 11:14:48 UTC from IEEE Xplore. Restrictions apply.

over it. In this manner, our solution is pluggable to any
similar deployment, by changing the monitored service and
the respective decision metrics.

A. Dataset and target metrics

For our setup, we use a target web service deployed in
our K8s cluster, and generate traffic accordingly in order to
scale it depending on the demand. Towards achieving this,
the Prometheus tool is configured to monitor the incoming
requests to the web server. This metric is used as the scaling
decision in our experiments, for the off-the-shelf Kubernetes
autoscaler and our own ML driven. In order to generate the
requests to the web service, we use an online available dataset
[4] that contains all the connections served over 4G base
stations in the Milan area over the course of the week. We
isolate the traffic from two base station (the most busy and
a medium utilized one) and replay the requests to the web
service. In the following section we detail our ML approaches
for predicting the evolution of this specific metric.

B. Machine Learning approaches

In this subsection, we present the Machine Learning (ML)
approaches that we followed in order to determine the most
appropriate solution for forecasting our monitored metrics. For
all the approaches, we used a 5-step out-of-sample prediction
mechanism. This consists of the following: 1) at first, every
model uses a dataset for input, in an appropriate format, used
for training. 2) Subsequently, the ML model is being fitted
on the training data so that it can be used for forecasting. 3)
The forecast that is being produced is just an observation that
is not part of the input data and that’s why it is called out-
of-sample. 4) Now, in order to make a 5-step out-of-sample
forecast, every prediction that is being made, is used as input
for the next one and the entire process is repeated 5 times.
To make things clearer, an example of a 3-step prediction is
being presented in Figure 1.

Fig. 1: Multi-step prediction employed in this work

As our ML model, we used and evaluated on their accuracy
three different ML, from three different categories as follows:

• Classical/Statistical models that have mainly strong base
in statistics like Moving Averages and Exponential
Smoothing. The AutoRegressive Integrated Moving Av-
erage (ARIMA) model [17] was used from this category.

• Machine Learning reduction models, such as Random
Forests. The XGBoost [18] algorithm was used from this
category.

• Deep Learning models for analyzing data with a time
component. The Long Short Term Memory (LSTM) [19]
model was used.

In the following subsections, we present some brief details
for each one of them.

1) AutoRegressive Integrated Moving Average - ARIMA:
ARIMA as a statistical based model, features Autoregression
(AR) for specifying the dependent relationship between an
observation and lagged observations. It also differences the
raw observations (e.g. subtracting an observation from an
observation at the previous time step) in order to ensure that
the data included in the model are stationary (Integrated -
I). Finally, it uses the dependency between observations and a
residual error from a moving average model in order to apply it
to lagged observations. All these components can be specified
in the model as parameters. Subsequently, a liner regression
model is constructed.

2) XGBoost: XGBoost is an open-source software library
standing or eXtreme Gradient Boosting. It is a gradient boost-
ing decision-tree based algorithm. XGBoost has gained a lot
of attention lately, due to its computational speed and model
performance. Unlike ARIMA, the input data must be prepared
accordingly for XGBoost in order to transform the problem to
a supervised learning one. Supervised learning is an approach
to Machine Learning where the machine learns from labeled
data. So, samples that have not seen before by the learner
are fed to the model and a prediction is made based on the
mapping learned.

3) Long Short-Term Memory - LSTM: The Long Short-
Term Memory (LSTM) network is a type of Recurrent Neural
Network used in deep learning. Recurrent networks have an
internal state that represents context information and keeps
track of the past inputs. LSTM models can identify and handle
long-term dependencies by using feedback connections and
not forward-feeding. They use memory blocks with gates that
manage the state and output of each component. Similar to
XGBoost, the data needs to be processed before feeding them
to the model; data needs to be preprocessed into multiple
input/output patterns (samples) where each input sequence is
used to produce a single output.

C. ML model selection and evaluation

In this section, we present a first evaluation that took place
in order to determine the effectiveness of each model in
forecasting the different values in the system. The evaluation is
driven by the tuning of all the hyperparameters for each model.
The following subsections present the specific parameters used
for each model in our architecture.

1) ARIMA Parameters: In order to evaluate the accuracy
of the ARIMA model, as well as to have a first view on how
it would perform in the real-time scenario that the scaling
mechanism will use to execute it, the dataset (see sect. III-A)
containing the connections served by the deployed service was

2022 IEEE Conference on Standards for Communications and Networking (CSCN)

159
Authorized licensed use limited to: University of Thessaly. Downloaded on December 08,2023 at 11:14:48 UTC from IEEE Xplore. Restrictions apply.

(a) ARIMA forecasting (b) XGBoost forecasting (c) LSTM model forecasting

Fig. 2: Evaluation for ARIMA, XGBoost and LSTM performance

split into two parts, one for training the model, and one for
testing its accuracy. The initial dataset, contains the number
of connections that get served over the network, and consists
of 1412 points in total. Out of these, the last 350 are used
as the test part, and the rest as the training set. The model
is set to forecast the next five values in each step. These
values are averaged in the output forecasting, in order to
minimize the produced error (as it is further presented in the
next subsections). The results on the comparison of the actual
values with the forecasted values are shown in Figure 2a.

2) XGBoost Parameters: Due to its decision-tree based
approach, XGBoost was found to perform better when using
about 50 points as input. Two hyperparameters values were
chosen: objective and n estimators. Objective specifies the
learning task and the corresponding learning objective to
be used. A wide variety of objectives were tested such as
count:poisson, reg:gamma, reg:squarederror, with reg:tweedie
being the best one for this case, due to the lowest Mean
Average Error. As far as the n estimators variable, it rep-
resents the number of gradient boosted trees. By evaluating
the mean average error, we concluded in configuring it to a
value of 20 for the XGBoostRegressor function. The same
dataset scenario as in the ARIMA case was used in order to
test this algorithm’s accuracy. The dataset was split into train
and test in the same manner as in ARIMA. Figure 2b shows
the XGBoost performance over the test data.

3) LSTM Parameters: As in the previous cases, the LSTM
model had to be tuned accordingly. The hyperparameters that
had to be tuned are: 1) LSTM Units: refers to the number
of units of the LSTM network. Using a higher number of
units indicates a more powerful/precise network, but raises the
training time, with the possibility to overfit the data. For our
case, 400 LSTM units was found to produce accurate forecasts.
2) Number of epochs: is the number of times that the learning
algorithm will work though the entire training dataset. For our
model, we used 40 epochs of training time. 3) Loss function:
is the function that calculates the error used in the training
process. For our model, we use the Mean Squared Error (MSE)
loss function, which calculates the loss based on the difference
between the model’s predictions and the ground truth, squaring
it and averaging it across the whole dataset. 4) Optimizer: is

a method for changing attributes (weights/learning rate) of the
neural network in order to reduce the losses. The ”Adam”
optimizer [20] was used because its effectiveness.

Fig. 3: Data fitting for the under-test LSTM model
In order to make forecasts and validate and visualize the

results as with the ARIMA and XGBoost cases, the same
methodology was used. The input dataset was split into train
and test. Figure 2c shows the LSTM network performance
over the same test dataset as the other algorithms. For such
neural networks, it can be difficult to diagnose that the model is
performing as expected. A good skill score might be extracted
but it is important to know whether or not the model is a good
fit for the training data or if it is under/over-fitting. A good fit
is identified by a training and validation loss and specifically, if
both of them decrease to a point of stability and the validation
loss has a small gap with the training loss. Figure 3 shows
that our models converges to low losses in about 9 epochs of
training time, and thus has a good fit to our data. Although
training seems to reach a near to minimum value for the loss
function in about 3 training epochs, our results with less than
9 training epochs yielded significantly higher Mean Absolute
Error (MAE) evaluation in the final testing data.

D. Mean Absolute Error Evaluation

In order to better visualize the differences in accuracy of
the different solutions, we also use the Mean Average Error
(MAE). MAE can reveal how accurate a forecast system is, by
measuring this accuracy as a percentage, and can be calculated

2022 IEEE Conference on Standards for Communications and Networking (CSCN)

160
Authorized licensed use limited to: University of Thessaly. Downloaded on December 08,2023 at 11:14:48 UTC from IEEE Xplore. Restrictions apply.

as the average absolute percent error for each time period
minus actual values divided by actual values. Table I shows the
MAE of every algorithm when using the same test dataset. As
it is clear, the statistical method is performing a better than
the tree- or LSTM approach. This is happening due to our
processing for each prediction round, as we forecast the next
five values, and average them as our predicted value.

TABLE I: Mean Average Error evaluation

Mean Average Error

Arima XGBoost LSTM

1.36 3.15 3.67

IV. SYSTEM SETUP AND EVALUATION

For the experimental evaluation of our ML-based real-time
scaling mechanism we used NITOS Testbed. NITOS [21] is an
integrated facility with heterogeneous testbeds that focuses on
supporting experimentation-based research in the area of wired
and wireless networks located in the city of Volos, Greece.

For our experimental setup, we target on applying the ML
approaches for the Kubernetes autoscaler. The autoscaler is
managing a web service (realized with php and Apache2)
deployed on the cluster, able to receive and serve requests
to the end users. We implemented a mechanism inside the
Prometheus tool, that monitors this deployment and collects
resource data that describe the web requests arriving at the
web server. The data are used to train the ML approaches,
and based on their forecasted values, we choose to proac-
tively scale the deployment. In this way, resources are being
allocated or released based on future traffic, so that they
are prepared to respond faster and more efficiently while at
the same time saving energy as there are no resources that
overwork or are idle. Also, this custom scaling mechanism
runs in real-time by appending the resource data to the dataset
that is used to train our algorithms periodically (per 3 minutes)
so that the ML predictions would be as close to the reality as
possible. For our evaluation, we compare our solution with the
off-the-shelf K8s Horizontal Pod Autoscaler.

We used 2 NITOS nodes that operated as a Kubernetes
Master and a Kubernetes Worker. We defined a deployment
that utilizes a php-apache server able to receive HTTP requests
from the outgress of the cluster, and subsequently generated
the requests towards the service using the aforementioned
dataset. We use two scenarios of traffic from the dataset: 1)
the one with the most requests (up to 14K requests within an
hour) and 2) one with a medium profile of traffic (approx. up
to 8K requests within the most busy hour of the day). In order
to test our ML mechanisms, we used the traffic patterns from
the high traffic dataset for training our algorithms, and tested
them with unseen data from the medium traffic dataset. The
two datasets are visualized in Figure 4.

In Figure 5 we demonstrate our results with respect to the
number of replicas active in the system. We compare our
results with the default K8s HPA, that is triggered once the
monitored metric (number of requests arriving at the monitored

Fig. 4: The two traffic datasets used in our experiments

service) reach a target. As it can be seen, for almost all cases, a
better use of resources is achieved as the scaling is done earlier
using this mechanism. More specifically, the same number of
replicas is being scaled several seconds before the HPA would
do, on most of the occasions.

In Figure 6, we illustrate the total CPU utilization for
every experiment that took place. As the scaling process
happens earlier than the HPA, better use of resources is being
expected to appear. We predict the upcoming traffic in order
to scale in time and when the traffic arrives everything is
scaled as they should do, so that there are no resources that
overwork or being allocated and not serving the traffic. That
is why better CPU utilization is being achieved implementing
our scaling mechanism even with the LSTM implementation
which produced the least accurate predictions in comparison
with XGBoost and Arima. Projecting the CPU utilization to
energy efficiency, by calculating the area below the CPU
utilization plots, we conclude that the ARIMA solution is
creating the most energy-efficient results, due to its ability
to better predict the upcoming requests for our dataset.

V. CONCLUSION AND FUTURE WORK

In this work, we experimentally evaluated three different
candidate solutions (statistical, tree- and CNN-based) for
determining the scale of network functions deployed within
a cluster of resources. All three solutions are found to be
outperforming the off-the-shelf scaling solutions that exist in
the K8s orchestration environment. Out of the three solution,
the statistical based one (ARIMA) seems to have better suit
our data, and hence present more accurate predictions. By
projecting our results to the total CPU utilization (which in
turn reveals the energy efficiency), we are able to conclude
that our proposed approach can lead to higher efficiency for
systems that employ such a pro-active approach. In the future,
we foresee to extend our schemes to manage specific functions
of the Telecom network (e.g. the 5G Core Network, or parts
of the RAN that are executed as functions in the cloud).

2022 IEEE Conference on Standards for Communications and Networking (CSCN)

161
Authorized licensed use limited to: University of Thessaly. Downloaded on December 08,2023 at 11:14:48 UTC from IEEE Xplore. Restrictions apply.

(a) ARIMA results (b) XGBoost results (c) LSTM results

Fig. 5: Experimental results on number of replicas for each algorithm vs the K8s HPA

(a) ARIMA results (b) XGBoost results (c) LSTM results

Fig. 6: Experimental results on CPU Utilization for each algorithm vs the K8s HPA

REFERENCES

[1] A. Garcia-Saavedra and X. Costa-Pérez, “O-RAN: Disrupting the Vir-
tualized RAN Ecosystem,” IEEE Communications Standards Magazine,
vol. 5, no. 4, pp. 96–103, 2021.

[2] S. Kukliński, L. Tomaszewski, and R. Kołakowski, “On O-RAN, MEC,
SON and network slicing integration,” in 2020 IEEE Globecom Work-
shops (GC Wkshps. IEEE, 2020, pp. 1–6.

[3] S. Rahman, T. Ahmed, M. Huynh, M. Tornatore, and B. Mukherjee,
“Auto-Scaling VNFs Using Machine Learning to Improve QoS and Re-
duce Cost,” in 2018 IEEE International Conference on Communications
(ICC), 2018, pp. 1–6.

[4] G. Barlacchi, M. De Nadai, R. Larcher, A. Casella, C. Chitic, G. Torrisi,
F. Antonelli, A. Vespignani, A. Pentland, and B. Lepri, “A multi-source
dataset of urban life in the city of Milan and the Province of Trentino,”
Scientific data, vol. 2, no. 1, pp. 1–15, 2015.

[5] D. Balla, C. Simon, and M. Maliosz, “Adaptive scaling of Kubernetes
pods,” in NOMS 2020-2020 IEEE/IFIP Network Operations and Man-
agement Symposium. IEEE, 2020, pp. 1–5.

[6] I. Syrigos, N. Sakellariou, S. Keranidis, and T. Korakis, “On the
Employment of Machine Learning Techniques for Troubleshooting WiFi
Networks,” in 2019 16th IEEE Annual Consumer Communications
Networking Conference (CCNC), 2019, pp. 1–6.

[7] Y. Ren, T. Phung-Duc, J.-C. Chen, and Z.-W. Yu, “Dynamic Auto
Scaling Algorithm (DASA) for 5G Mobile Networks,” in 2016 IEEE
Global Communications Conference (GLOBECOM), 2016, pp. 1–6.

[8] T. Subramanya and R. Riggio, “Centralized and Federated Learning
for Predictive VNF Autoscaling in Multi-Domain 5G Networks and
Beyond,” IEEE Transactions on Network and Service Management,
vol. 18, no. 1, pp. 63–78, 2021.

[9] P. Soto, D. De Vleeschauwer, M. Camelo, Y. De Bock, K. De Schep-
per, C.-Y. Chang, P. Hellinckx, J. F. Botero, and S. Latré, “Towards
Autonomous VNF Auto-scaling using Deep Reinforcement Learning,”
in 2021 Eighth International Conference on Software Defined Systems
(SDS), 2021, pp. 01–08.

[10] H. Jmila, M. Ibn Khedher, and M. El Yacoubi, “Estimating VNF
resource requirements using machine learning techniques,” in ICONIP

2017 : 24th International Conference on Neural Information Processing.
Guangzhou, China: Springer, Nov. 2017, pp. 883 – 892. [Online].
Available: https://hal.archives-ouvertes.fr/hal-01682996

[11] X. T. Vu, J. Lee, Q. H. Nguyen, K. Sun, and Y. Kim, “An architecture
for enabling VNF auto-scaling with flow migration,” in 2020 Inter-
national Conference on Information and Communication Technology
Convergence (ICTC), 2020, pp. 624–627.

[12] A. Dalgkitsis, P.-V. Mekikis, A. Antonopoulos, G. Kormentzas, and
C. Verikoukis, “Dynamic Resource Aware VNF Placement with Deep
Reinforcement Learning for 5G Networks,” in GLOBECOM 2020 - 2020
IEEE Global Communications Conference, 2020, pp. 1–6.

[13] S. Lange, H.-G. Kim, S.-Y. Jeong, H. Choi, J.-H. Yoo, and J. W.-
K. Hong, “Predicting VNF Deployment Decisions under Dynamically
Changing Network Conditions,” in 2019 CNSM, 2019, pp. 1–9.

[14] P. T. A. Quang, A. Bradai, K. D. Singh, G. Picard, and R. Riggio,
“Single and Multi-Domain Adaptive Allocation Algorithms for VNF
Forwarding Graph Embedding,” IEEE Transactions on Network and
Service Management, vol. 16, no. 1, pp. 98–112, 2019.

[15] B. Burns, J. Beda, K. Hightower, and L. Evenson, Kubernetes: up and
running. ” O’Reilly Media, Inc.”, 2022.

[16] J. Turnbull, Monitoring with Prometheus. Turnbull Press, 2018.
[17] S. L. Ho and M. Xie, “The use of ARIMA models for reliability

forecasting and analysis,” Computers & industrial engineering, vol. 35,
no. 1-2, pp. 213–216, 1998.

[18] T. Chen, T. He, M. Benesty, V. Khotilovich, Y. Tang, H. Cho, K. Chen
et al., “XGboost: extreme gradient boosting,” R package version 0.4-2,
vol. 1, no. 4, pp. 1–4, 2015.

[19] S. Siami-Namini, N. Tavakoli, and A. S. Namin, “A comparison of
ARIMA and LSTM in forecasting time series,” in 2018 17th IEEE in-
ternational conference on machine learning and applications (ICMLA).
IEEE, 2018, pp. 1394–1401.

[20] D. P. Kingma and J. Ba, “Adam: A Method for Stochastic Optimization,”
2017.

[21] N. Makris, C. Zarafetas, S. Kechagias, T. Korakis, I. Seskar, and L. Tas-
siulas, “Enabling open access to LTE network components; the NITOS
testbed paradigm,” in Proceedings of the 2015 1st IEEE Conference on
Network Softwarization (NetSoft), 2015, pp. 1–6.

2022 IEEE Conference on Standards for Communications and Networking (CSCN)

162
Authorized licensed use limited to: University of Thessaly. Downloaded on December 08,2023 at 11:14:48 UTC from IEEE Xplore. Restrictions apply.

