
Vol.:(0123456789)

Journal of Network and Systems Management (2023) 31:20
https://doi.org/10.1007/s10922-022-09710-3

1 3

How Low Can You Go? A Limbo Dance for Low‑Latency
Network Functions

Sebastian Gallenmüller1 · Florian Wiedner1 · Johannes Naab1 ·
Georg Carle1

Received: 1 March 2022 / Accepted: 22 November 2022 / Published online: 28 December 2022
© The Author(s) 2022

Abstract
Throughput is a commonly used performance indicator for networks. However,
throughput may be considered insignificant if data is outdated or networks become
unpredictable or unreliable. Critical services may even prioritize latency, predict-
ability, and reliability at the expense of throughput to avoid detrimental effects on
service operation. Latency, predictability, and reliability are distinct qualities real-
ized in real-time systems. Real-time systems often require additional effort using
non-standard interfaces, requiring customized software, or providing low through-
put figures. This work picks up the challenge and investigates a single-server net-
work function—a building block for end-to-end low-latency network applications.
Assessing reliability and quantifying low latency is equally challenging, as sub-
microsecond latency and 1∕105 loss probability leave little room for error. Both, our
measurement and the investigated platforms, rely on Linux running on off-the-shelf
components. Our paper provides a comprehensive study on the impact of various
components on latency and reliability, such as the central processing unit (CPU), the
Linux Kernel, the network card, virtualization features, and the networking applica-
tion itself. We chose Suricata, an intrusion prevention system (IPS), representing a
widely deployed, typical network application as our primary subject of investigation.

Keywords Ultra reliable · Low latency · DPDK · Network experiment · Intrusion
prevention

This work is based on our paper presented at HiPNet 2021 [1] and previous low-latency studies [2,
3].

 * Sebastian Gallenmüller
 gallenmu@net.in.tum.de

Extended author information available on the last page of the article

http://orcid.org/0000-0002-7173-3573
http://orcid.org/0000-0003-2471-9864
http://orcid.org/0000-0002-8808-7643
http://orcid.org/0000-0002-2347-1839
http://crossmark.crossref.org/dialog/?doi=10.1007/s10922-022-09710-3&domain=pdf

 Journal of Network and Systems Management (2023) 31:20

1 3

20 Page 2 of 28

1 Introduction

5G networks provide a dedicated service for ultra-reliable and low-latency com-
munication (URLLC) that requires end-to-end reliability up to 6-nines and
latency as low as 1 ms [4]. Investigating URLLC-compliance involves two chal-
lenges. First, we need measurement facilities and tools. Our experimental plat-
form must be capable of accurately and precisely determining sub-ms latency.
The reliability of the measurement system is key to observing rare events. Sec-
ond, we want to investigate the design of a software stack capable of hosting
URLLC applications. Thus, we need to understand the performance of multiple
interacting system components impacting network input / output (IO), such as the
network interface card (NIC), the central processing unit (CPU), the operating
system (OS), and the application itself.

URLLC requirements are especially challenging for systems that involve soft-
ware packet processing systems. Packet processing tasks, hosted on off-the-shelf
hardware, are subject to slow memory accesses, operating system interrupts, or
system resources shared across different processes. Such adversities may intro-
duce undesirably high latency, preventing the successful operation of URLLC.
This work describes, applies, and measures various hardware acceleration tech-
niques and an optimized software stack to provide URLLC-compliant service lev-
els. In this work, we target a security-related network function common to many
deployments, not only 5G. Here, we investigate Suricata [5], a widely deployed
intrusion prevention system (IPS). This investigation considers both quality and
throughput in the investigation of an IPS.

We aim to achieve the following goals in our paper:

– establishing a measurement methodology and platform that allows accurate and
precise latency measurements with a particular focus on tail-latency behavior;

– creating a highly optimized software stack for predictable low-latency network
functions on off-the-shelf hardware;

– demonstrating the performance of our software stack depending on various sys-
tem components such as the Linux kernel, different NICs, and virtualization; and

– deriving guidelines to design and operate applications with a predictably low
latency.

The remainder of the paper is structured as follows: We present a motivating
example demonstrating the impact of latency and the importance of optimizing
systems towards ultra-low latency in Sect. 2. Section 3 introduces related work
and the underlying techniques. Based on these techniques, we create a low-
latency software stack in Sect. 4. In Sect. 5, we present our measurement method-
ology and toolchain. Section 6 determines the impact of the previously described
technologies and derives guidelines for creating low-latency systems. The limita-
tions of the described solutions are discussed in Sect. 7. All experiment artifacts
used in this paper are publicly available; a short introduction how to reproduce
our research is given in Sect. 8. Finally, Sect. 9 concludes the paper.

1 3

Journal of Network and Systems Management (2023) 31:20 Page 3 of 28 20

2 Motivating Example

To demonstrate the impact of a typical packet processing task on latency, we
measured an application running on a server based on off-the-shelf hardware. The
investigated application is Suricata, an IPS. We measured the latency between the
ingress and egress port of our IPS for each packet. To avoid packet losses due to
overload, our measurement uses a constant packet rate of 10 kpkts/s, well below
the maximum capacity that the IPS can handle. To determine the latency, we used
hardware timestamps taken on a separate device to ensure that the observed laten-
cies were caused by Suricata, not the measurement device.

A starting application may be subject to higher latencies caused by memory
allocation or empty caches. We are only interested in steady-state behavior; there-
fore, we cut the first second of measurement data. Figure 1 shows a scatter plot
of the measured forwarding latency. We filtered for the 5000 worst-case laten-
cies, taken over a 60-second measurement run. We observed a median latency
of 47�s and sudden latency spikes up to 1.8 ms. Repeated measurements led to
similar latency spikes. However, we could not determine a regular pattern for
these spikes; thus, the latency may suddenly increase, randomly impacting the
IPS latency.

This example measurement demonstrates that despite favorable conditions—
moderate traffic and pre-loaded application—the investigated system neither pro-
vides low nor predictable latency. The height and the randomness of the spikes
disqualify such a system to be used for reliable communication, such as URLLC.
At the same time, the example highlights the potential for improvement. We
measured a 38-fold difference between median and worst-case values. Therefore,
we investigate various techniques that promise the realization of services with
predictably low latency on off-the-shelf systems. If we improve worst-case laten-
cies significantly, URLLC-compliant packet processing in software running on
off-the-shelf hardware becomes feasible.

Fig. 1 Worst-case forwarding latencies of Suricata

 Journal of Network and Systems Management (2023) 31:20

1 3

20 Page 4 of 28

3 Background and Related Work

This section introduces the background and related work investigating various
studies and system components that may introduce latency for packet processing
systems. We focus our investigation on software packet processing systems based
on Linux and off-the-shelf hardware components. In addition, we examine intru-
sion prevention systems.

Low-Latency Measurements Several guides exist for tuning Linux [6–9] to reduce
the latency for packet processing applications through measures such as core isola-
tion, disabling virtual cores or energy-saving mechanisms, and reducing the number
of interrupts. Li et al. [10] investigate the latency of Nginx and Memcached, focus-
ing on rare latency events. Their investigations stress the importance of tail-latency
analysis, especially considering network applications that perform the same tasks
with high repetition rates. Higher repetition rates increase the probability of observ-
ing seemingly rare events and their impact on the overall application performance.
Popescu et al. [11] demonstrate that latency increases as low as 10�s can have a
noticeable impact on applications, e.g., Memcached. A study by Barroso et al. [12]
demonstrates the need for �s-scale latency IO in data center applications. They pro-
pose a synchronized programming model to simplify application development for
low-latency applications. In previous work [2, 3], we demonstrated that high reli-
ability and low latency could be achieved on off-the-shelf hardware and virtualized
systems, using a DPDK-accelerated Snort. However, the latency was still subject to
interrupts causing latency spikes in the �s-range.

Hardware Properties HyperThreading (HT), also called simultaneous multi-
threading (SMT), is a feature of modern CPUs that allows addressing physical cores
(p-cores) as multiple virtual cores (v-cores). Each p-core has its own physically sep-
arate functional units (FU) to execute processes independently. If multiple v-cores
are hosted on a common p-core, FUs are shared between them. Zhang et al. [13]
demonstrate that sharing FUs between v-cores can impact application performance
when executing processes on v-cores instead of physically separate p-cores.

Another feature of modern CPUs is the support of sleep states, which lower
CPU clock frequency and power consumption. Switching the CPU from an
energy-saving state to an operational state leads to wake-up latencies. Schöne
et al. [14] measured wake-up latencies between 1�s and 40�s for Intel CPUs
depending on the state transition and the processor architecture.

Despite having physically separate FUs, p-cores share a common last-level
cache (LLC). Therefore, processes running on separate p-cores can still impact
each other competing on the LLC. Herdrich et al. [15] observed a performance
penalty of 64% for a virtualized, DPDK-accelerated application when running in
parallel with an application utilizing LLC heavily. The uncontended application
performance can be restored for the DPDK application by dividing the LLC stati-
cally between CPU cores utilizing the cache allocation technology (CAT) [15, 16]
of modern Intel CPUs.

Low-Latency VM IO Transferring packets into/out of a virtual machine (VM)
leads to significant performance penalties compared to bare-metal systems.

1 3

Journal of Network and Systems Management (2023) 31:20 Page 5 of 28 20

Emmerich et al. [17] compared packet forwarding in bare-metal and VM scenar-
ios, demonstrating that VMs can introduce high tail latencies of 350�s and above.
They also demonstrated that DPDK could help improve forwarding latencies but
must be used on the host system and the VM.

Furthermore, modern NICs, supporting single-root IO virtualization (SR-IOV),
can be split into several independent virtual functions, which can be used as inde-
pendent NICs and bound to VMs exclusively. In this case, virtual switching is done
on the NIC itself, minimizing the software stack involved in packet processing. In
an investigation by Lettieri et al. [18], SR-IOV, among other techniques for high-
speed VM-based network functions, is one of the fastest techniques with the low-
est CPU utilization. Therefore, the latency performance of SR-IOV is superior to
software switches; e.g., Xu and Davda [19] measured an almost 10-fold increase
in worst-case latencies for a software switch. Xiang et al. [20] create and evaluate
an architecture for low-latency network functions. Their architecture provides sub-
millisecond latencies, but they do not investigate the worst-case behavior. Zilberman
et al. [21] give an in-depth latency analysis of various applications and switching
devices. They stress the need for tail-latency analysis to analyze application perfor-
mance comprehensively.

The topic of VM-based network functions has been extensively researched in lit-
erature [18–20]. However, given our motivating example in Sect. 2 and the impor-
tance of the URLLC service, we argue, similar to Zilberman et al. [21], that the
crucial worst-case behavior needs close attention. Hence, we aim to create the low-
est latency system achievable by utilizing available applications on off-the-shelf
hardware.

There are also embedded systems such as jailhouse [22] or PikeOS [23] that can
partition the available hardware providing real-time guarantees for user processes or
VMs. However, they are either incompatible with standard Linux interfaces such as
libvirt or replace the host OS entirely. Therefore, the tool support for these special-
ized hypervisors is worse compared to more widespread solutions such as Xen or the
kernel-based virtual machine (KVM) utilizing the libvirt software stack. Thus, we
do not consider these specialized solutions for this work but rely on well-established
software tools and hardware.

Kernel
Reghenzani et al. [24] present an extensive survey on the evolution and features of

real-time Linux. Real-time capabilities are added to the regular or vanilla Linux ker-
nel through a set of patches. Over time, these rt patches were incrementally added to
the mainline kernel code. A significant feature of these patches is the predictability
they introduce to the Linux kernel. They achieve this by increasing the preemptabil-
ity of kernel code. By allowing preemptability to formerly non-interruptable parts of
the kernel code, applications can be scheduled more regularly, avoiding long phases
of non-activity.

The Linux kernel uses scheduling-clock interrupts, or short ticks, for scheduling
processes [25]. With the introduction of the tickless kernel, these interrupts can be
entirely disabled for specific cores if the no-hz-full mode is enabled. A no-hz-full
core that runs a single process exclusively, disables its ticks and can execute this
process in an almost interrupt-free mode. Hosting more than one process on such a

 Journal of Network and Systems Management (2023) 31:20

1 3

20 Page 6 of 28

core re-enables the tick. The no-hz-full mode can be enabled for all but one core on
a system. The remaining core always operates in the non-tickless mode executing
potential scheduling tasks for the other cores.

Because of the high relevance of interrupt handling on latency [1–3, 17], we want
to investigate the latency impact of the different Linux kernel variants. In this work,
we create Linux images with the vanilla, rt, and no-hz kernels being the only differ-
ence between them, to ensure comparable results.

Kernel Bypass Techniques Another possible cause for OS interrupts is the occur-
rence of IO events, e.g., arriving packets, to be handled by the OS immediately.
Interrupt handling causes short-time disruptions for currently running processes.
The ixgbe network driver [26] and Linux [27] employ moderation techniques
to minimize the number of interrupts and, therefore, their impact on processing
latency. Both techniques were introduced as a compromise between throughput and
latency optimization. For our low-latency design goal, neither technique is optimal,
as the interrupts—although reduced in numbers—cause irregular variations in the
processing delay, which should be avoided.

DPDK [28], a framework optimized for high-performance packet processing, pre-
vents triggering interrupts for network IO entirely. It ships with its own userspace
drivers, which avoid interrupts but poll packets actively instead. This leads to execu-
tion times with only minor variation also due to DPDK’s preallocation of memory
and a lack of costly context switches between userspace and kernelspace. However,
polling requires the CPU to wake up regularly, increasing energy consumption.

The Linux Kernel’s XDP does not bypass the entire kernel but its network stack,
offering throughput and latency improvements [29]. However, in a direct compari-
son with DPDK, they measured a higher forwarding latency for XDP (202�s vs.
189�s). XDP uses an adaptive interrupt-based process for packet reception. Though
conserving energy, compared to DPDK’s polling strategy, it leads to higher latencies
for low packet rates.

PF_RING [30] is a packet processing framework that follows a design philoso-
phy similar to DPDK, shifting the packet processing to userspace. The netmap [31]
framework, like XDP, was designed with OS integration in mind. It uses system calls
for packet reception and transfer. Though the number of system calls is reduced, net-
map still has a higher overhead, increasing the cost and latency of packet IO. In a
direct comparison between DPDK, PF_RING, and netmap, DPDK offered higher
throughput than netmap and PF_RING, and the latency of DPDK was equal to PF_
RING and lower than netmap’s latency [32].

Measurement Methodology MoonGen [33] offers accurate and precise hardware
timestamping on widely available Intel NICs (cf. Sect. 5). However, due to hardware
limitations, most 10G NICs cannot timestamp the entire traffic, but a small frac-
tion of it (approx. 1 kpkt/s). We also demonstrated that creating reliable timestamp
measurements using software packet generators is challenging [34]. Although the
software solution can timestamp high throughput rates, its expressiveness is limited.
The software timestamping process is subject to effects that impact measurements
such as interrupts, causing latency spikes on the investigated system. This behavior
makes it hard to attribute latency spikes to either the investigated system or the load
generator.

1 3

Journal of Network and Systems Management (2023) 31:20 Page 7 of 28 20

Dedicated timestamping hardware [35, 36] offers line-rate high-precision and
high-accuracy timestamping on multiple 10G Ethernet ports but requires additional
hardware, increasing the costs of the measurement setup. A study by Primorac
et al. [37] compared MoonGen’s timestamping to various software and hardware
timestamping solutions. They concluded that MoonGen’s hardware timestamping
method offers a similar accuracy and precision compared to a professional times-
tamping hardware solution. Further, they recommend hardware timestamping solu-
tions for investigating latencies in the �s-range.

Intrusion Prevention Intrusion prevention systems are a combination of a firewall
with an intrusion detection system. IPSes detect and react to intrusions by identi-
fying and blocking harmful network flows [38]. Security-related network functions
like IPS can be subjected to quality of service requirements, for instance, in 5G
URLLC.

Our previous studies have demonstrated a maximum latency of approx. 120�s
at a maximum packet rate of 60 kpkt/s for a DPDK-accelerated Snort IPS [2]. A
reliable, low-latency service is possible using off-the-shelf hardware when certain
operating conditions are met, e.g., exclusive access to system resources or the avail-
ability of sufficient compute resources.

A study by Albin et al. [39] measures the performance of the Suricata IPS [5] to
be equal to or higher than the performance of Snort. Suricata’s architecture allows an
approximately linear growth in performance with the number of cores. Suricata sup-
ports various kernel bypass frameworks such as PF_RING, netmap, or XDP [40].
DPDK support for Suricata was introduced in December 2021 [41]. Its progressive
software architecture and the recently added DPDK support promise equal or better
performance than a DPDK-accelerated Snort. This combination makes Suricata an
attractive subject for further investigation compared to our previous Snort-centered
studies.

Evaluation of the State of the Art Increased requirements regarding latency and
reliability demand a reevaluation of measurements and their methodology. Based
on state-of-the-art technologies such as kernel bypass, real-time Linux kernels,
and hardware-accelerated virtualization, we aim to create a software stack archi-
tecture that removes interrupts entirely, to provide ultra-reliability combined with
low latency. At the same time, we need a powerful measurement infrastructure and
measurement approach to observe these systems with the necessary accuracy and
precision. Therefore, we present a measurement methodology that can handle the
challenging scenario of high packet throughput paired with precise and accurate
latency measurements.

4 Low‑Latency System Design

This section describes the critical factors of our low-latency system design. We
continue the work presented in previous studies [1–3] and present the derived low-
latency system design based on various tuning guides [6–9]. In particular, we focus
our investigation on an updated software stack relying on DPDK 21.11, Debian 11
using Kernel 5.10, and Suricata 7.0. Additionally, we investigate further system

 Journal of Network and Systems Management (2023) 31:20

1 3

20 Page 8 of 28

components impacting forwarding latency, such as the NIC, virtualization, or soft-
ware architectures.

Suricata was chosen as a typical example of a security network function. To pro-
vide a secure network, such functions need to be applied to a significant portion of
the traffic, thereby potentially increasing the latency of every investigated packet.
In addition, these security functions may introduce high tail latencies (cf. Sect. 2),
violating quality of service requirements such as the 1-ms goal of URLLC connec-
tions. In the past, we investigated the Snort 3 IPS [1–3]. In this work, we focus on
the Suricata IPS. The architecture of Suricata is focused on multi-core architectures
in contrast to Snort, impacting processing performance [42]. Because of these differ-
ences, Suricata was chosen as the primary target for this paper.

4.1 OS‑Specific Techniques

In the following, we discuss various techniques that can be used to optimize OS set-
tings to create a low-latency environment for hosting packet processing applications.

Figure 2 visualizes the distribution of CPU cores between host OS and the differ-
ent applications used on top. For the given three-core CPU, the host OS uses P-core
0 exclusively; the intrusion detection software runs on P-cores 1 and 2, with P-core
1 dedicated to a management thread and P-core 2 to a worker thread performing the
packet processing tasks. The isolcpu () boot parameter enforces this isolation by
preventing the Linux scheduler from scheduling other processes onto the isolated
cores. In Fig. 2, P-cores 1 and 2 are isolated. According to this configuration, the OS
cannot schedule processes onto P-cores 1 and 2, creating the perfect environment for
the uninterrupted execution of our packet processing application.

Our previous work [2] shows that OS interrupts happen on isolated cores, caus-
ing latency spikes up to approx. 20�s . The boot parameter nohz_full () disables
scheduling interrupts on specific cores when they are only executing a single thread.
However, neither the vanilla nor the real-time (rt) kernel of Debian were compiled
with the necessary options enabled. Therefore, the kernel must be recompiled with
the configuration options CONFIG_NO_HZ_FULL and CONFIG_RCU_NOCB_
FULL activated. The read-copy-update (RCU) is a synchronization mechanism in
the Linux kernel that may cause callbacks handled by interrupts on specific cores.

Fig. 2 Software stack architecture

1 3

Journal of Network and Systems Management (2023) 31:20 Page 9 of 28 20

The two boot parameters rcu_nocbs () and rcu_nocb_poll () shift in-kernel RCU
handling to different cores, avoiding interrupts on the nohz-enabled cores.

Devices, such as NICs, can trigger interrupts to signal the reception of new pack-
ets. Setting the irqaffinity () to P-core 0 forces them to be handled on the desig-
nated OS core, avoiding network-induced interrupts for all other cores. The packets
received via DPDK do not use this mechanism, but the receiving application polls
for new packets.

To keep the CPU always in its most reactive state, we use the options idle ()
and intel_idle.max_cstate (). In addition, the intel pstate driver is disabled to avoid
switching the CPU into power-saving states (intel_pstate,). Switching off energy-
saving mechanisms can improve latency beyond the 99.99th percentile by approx.
10�s according to Primorac et al. [37].

Linux assumes the time stamp counter (TSC) clock to be unreliable and regu-
larly checks whether the TSC frequency is correct. The option tsc=reliable ()
disables these regular checks avoiding interrupts [9]. These checks can be disabled
safely for modern Intel Core-based microarchitectures, where the TSC is invariant,
i.e., independent of the CPU’s clock frequency [43]. Correcting errors and scan-
ning for errors can cause additional periodic latency spikes in our measurements,
mce=ignore_ce () ignores corrected errors. The parameter audit=0 () disables the
internal audit subsystem, which causes load on each core, interrupting programs.

In addition, using nmi_watchdog=0 () disables another watchdog. This watch-
dog uses the infrastructure of the perf profiling utility, causing additional overhead
for our low-latency system. The option skew_tick=1 () shifts the periodic ticks
between different CPU cores. This helps to avoid resource contention initiated by a
tick happening on all CPU cores simultaneously. For diagnostic purposes, the Linux
kernel creates logs for long-running processes. The parameter nosoftlockup ()
disables these logs, as we want to avoid the logging overhead for our investigated
application [7].

We compiled a list of used parameters and the respective values in Table 1. Each
parameter is labeled to link the explanation in the previous text with the table. This
list briefly introduces the applied measures to lower unwanted interruptions for our
packet processing application.

Some additional settings need to be set on the corresponding machine during
runtime. We set the virtual memory statistics collector interval to 3600 s for reduc-
ing the time of recalculating those statistics. The Intel CAT tool [16] is used to stati-
cally assign the LLC to cores, reducing delays caused by cache contention.

4.2 Application‑Specific Techniques

In this subsection, we discuss the techniques that should be considered when creat-
ing a low-latency network application. As an application framework, we suggest the
usage of DPDK to reduce the impact of the Linux Kernel on networking applica-
tions. DPDK shifts the entire packet processing tasks, including drivers, to the user-
space. DPDK’s drivers poll the NIC for new packets, entirely avoiding interrupts.
By preventing these packet reception interrupts, packet processing happens more

 Journal of Network and Systems Management (2023) 31:20

1 3

20 Page 10 of 28

predictably. Several similar kernel bypass frameworks exist. However, DPDK’s
strictly polling-based reception promises the lowest possible latency compared to
the other frameworks, such as XDP, netmap, or PF_RING (cf. Sect. 3). The Linux
networking API (NAPI) reduces the number of interrupts generated but still relies
on them [27]. Therefore, the NAPI itself will cause interrupts, impacting network
performance and latency. To incorporate further NICs into our measurement, we use
DPDK 21.11, which supports newer NICs, such as the Intel E810. The architecture
of the NIC can have an additional impact on latency (cf. Sect. 6.2.2). For compari-
son, have we compiled the measurements using the same hardware setup as in previ-
ous works [1–3].

5 Measurement Methodology

This section presents the main challenges of performing sub-microsecond latency
measurements. Afterward, we describe our toolchain and measurement setup for our
subsequent case study.

Reliability We assess the reliability of a connection by quantifying its packet loss.
In the context of this paper, the highest level of reliability is achieved if no packets
are lost between the ingress and the egress port of an investigated system. Reliability
is equally crucial for the measurement equipment, i.e., no packet loss should happen
for the traffic sent to and received from an investigated system. A highly reliable,
i.e., loss-free, measurement system is essential to measure rare latency events, as
these events may be missed on a lossy measurement system.

Accuracy vs. Precision The quality of latency measurements can be evaluated
along two dimensions—accuracy and precision. According to ISO [44], accu-
racy describes the “closeness of agreement between a test result and the accepted

Table 1 Latency optimized bootparameters

Parameter Value Description

isolcpus [cores] Isolate from kernel scheduler
nohz_full [cores] No timer ticks
rcu_nocbs [cores] No RCU callbacks
rcu_nocbs_poll No RCU callback threads wake-up
irqaffinity 0 Interrupts on specific core
idle poll Poll mode when core idle
intel_idle.max_cstate 0 Limit CPU to c-state
intel_pstate disable Power state driver disabled
tsc reliable Rely on TSC without check
mce ignore_ce Ignore corrected errors
audit 0 Disable audit messages
nmi_watchdog 0 Disable NMI watchdog
skew_tick 1 No simultaneous ticks for locks
nosoftlookup Disables logging of backtraces

1 3

Journal of Network and Systems Management (2023) 31:20 Page 11 of 28 20

reference value” and precision refers to the “closeness of agreement between inde-
pendent test results.” Applying these definitions to our measurements, we consider
accuracy as a measure to describe how close a measured timestamp is to the actual
event. Precision is defined as the statistical variability between different measure-
ments, i.e., how close the individual measurements are to each other. Low-latency
measurements require high accuracy, as the already low measurement values reduce
the tolerable error margin. The difference between accuracy and precision is visu-
alized in Figure 3. A low-precision measurement system may heavily impact tail-
latency measurements through statistical errors introduced by the measurement sys-
tem itself. Therefore, high precision is essential to measure rare events reliably.

Software Timestamping vs. Hardware Timestamping Packet reception on modern
servers happens asynchronously, i.e., received packets are copied from NIC to RAM
and reception is signaled to the CPU eventually. Software timestamping can only
happen after the reception is announced to the CPU, which introduces additional
latency, causing low accuracy. Without the optimizations mentioned in Sect. 4, inter-
rupts caused by the OS may eventually delay the timestamping process of the CPU,
causing low precision. The previously mentioned problems do not impact hardware
timestamps: packets are timestamped shortly and accurately after reception on the
NIC itself, and they are timestamped precisely, not impacted by OS interrupts. With
hardware timestamping improving both, precision and latency, hardware timestamp-
ing is the superior measurement method compared to software timestamping.

MoonGen MoonGen [34] is a packet generator that supports hardware times-
tamping without relying on specialized and expensive hardware. It uses the hard-
ware timestamping features of widely deployed Intel 10G and 40G NICs, such as
the X520, X550, X710, or XL710 [45, 46]. The hardware timestamping feature was
integrated into these NICs to provide precise timestamps for the precision time pro-
tocol (PTP). NICs that implement PTP in hardware do typically not support times-
tamping all packets at line rate. Therefore, MoonGen relies on a sampling process,
i.e., only up to 1 kpkt/s are timestamped. This is a severe limitation, as the sampling
would require extensive measurement times to observe rare latency events reliably.

To capture tail latencies more effectively, we prefer timestamping the entire
packet stream. The Intel X550 NIC [47] offers hardware timestamping of all packets
with a resolution of 12.5 ns. However, the NIC can only timestamp all the received
packets, not the sent packets. To timestamp the outgoing traffic, we introduce an
optical splitter or terminal access point (TAP) into our measurement setup. An
example of such a setup is shown in Fig. 4. In this setup, a separate timestamper
is introduced that taps into the optical fiber connection. This setup allows times-
tamping the entire ingoing and outgoing unidirectional traffic between the two other

Fig. 3 Accuracy and precision for latency measurements

 Journal of Network and Systems Management (2023) 31:20

1 3

20 Page 12 of 28

network nodes. The optical splitter allows a third interface to tap into an optical fiber
connection and timestamp all packets sent by another interface. Tapping works pas-
sively; therefore, only a static offset is introduced to our latency measurements due
to slightly longer fibers for the measurement setup. The medium propagation speed
in optical fibers is 0.22 m/ns (based on 0.72 c [34]). The passive optical splitters
do not introduce jitter, thus, do not impact the precision of our measurement; the
impact on accuracy can be corrected if the fiber lengths are known. Using the propa-
gation speed and the length of the fibers in a measurement setup would allow calcu-
lating the increased propagation delay. However, we did not perform this correction
as the delay introduced by a few meters of additional fibers is still lower than the
resolution of our timer. MoonGen supports the timestamping method of X550-based
NICs through a userscript called MoonSniff. We determine the forwarding latency
in three steps:

1. We use MoonSniff to record timestamped pcaps of the ingress and egress interface
of a Device under Test (DuT).

2. We extract packet signatures from the pcaps and import them into a PostgreSQL
database [48].

3. We match the packets from the ingress pcap to their respective counterpart of the
egress pcap.

This kind of matching can be efficiently computed using database joins. The join
operation can be adapted to consider specific parts of the packet, such as an included
packet counter, to identify matching packets. After the matching packets have been
identified, the database can calculate the forwarding latency using the packets’
timestamps. In this database-driven approach, different analyses are realized as SQL
statements. We use PostgreSQL to calculate packet transfer and loss rates, maximum
and minimum latency values, latency percentiles, latency and jitter histograms, and
worst-case latency time series.

This section has introduced the challenges for sub-microsecond latency measure-
ments and a methodology to ensure the quality of these measurements. Based on
these findings, we deduct the first recommendation, to be used to create a measure-
ment setup optimized for sub-microsecond measurements:

Recommendation I: Measurement Setup Software timestamping on the meas-
urement systems is subject to effects that may impact the quality of measurements.
Hardware timestamping can help avoid these effects, ensuring high accuracy and
precision. Both quality measures are essential for observing short and rare events,
as minor deviations in the measurement may heavily impact the output. We recom-
mend exclusively using hardware timestamping on affordable off-the-shelf hardware

Fig. 4 Setup overview

1 3

Journal of Network and Systems Management (2023) 31:20 Page 13 of 28 20

to minimize the measurement effort and cost while maximizing measurement
quality.

6 Evaluation

This section introduces the measurement setup, our measurement methodology, and
results.

6.1 Setup

The setup, shown in Fig. 4, is based on the presented measurement methodology.
Our setup involves three nodes, the DuT hosting different applications, the LoadGen
connected to the DuT via two 10G links, and the Timestamper that monitors both
links passively via optical splitters. We kept hardware and software identical to our
previous work [1–3], to generate easily comparable results. All three nodes use the
Intel Xeon D-1518 SoC (4 × 2.2 GHz) and its integrated Intel 10G dual-port X552
NIC. The DuT was further equipped with three Intel NICs, based on the Intel 82599,
X710, and E810 controllers, to investigate the impact of different NICs on latency.
The DuT runs Debian bullseye (kernel v5.10) with the different kernels described
in Sect. 3. We use KVM as hypervisor and DPDK version 21.11. We want to meas-
ure the packet loss and latency of applications with different complexity. The first
investigated application is a basic L2 forwarder included in DPDK [28]. This basic
packet processing application is investigated to provide an artificially simple exam-
ple demonstrating the best-case performance. The second application is Suricata
v7.0 [5], an example of a more complex, real-world packet processing application
and its performance.

We test using constant bit-rate traffic with 64 B-sized packets. All measurements
were repeated with packet rates between 10 kpkt/s and 250 kpkt/s. We select UDP
to avoid any impact of TCP congestion control on latency. The payload of the gen-
erated traffic contains an identifier for matching the different packets for the subse-
quent latency calculation.

The experiments were conducted in our testbed using the pos framework utilizing
an automated experiment workflow to ensure reproducible results [49].

6.2 Results

We try to determine the effects of specific system changes on latency. Therefore, we
start our measurement with a simple forwarding application and gradually increase
the complexity of our DuT.

6.2.1 Impact of the Linux Kernel

In this section, we want to determine the effect of the Linux kernel on latency.
We investigate three different Debian Linux kernels: the vanilla kernel without

 Journal of Network and Systems Management (2023) 31:20

1 3

20 Page 14 of 28

any changes, the rt kernel provided via the Debian package repository, and a self-
compiled kernel with the enabled CONFIG_NO_HZ_FULL flag. All three images
are built using the identical kernel version 5.10.0-10, to keep the differences
between the images minimal.

DPDK-l2fwd
Figure 5 presents the forwarding latency of a DPDK Layer 2 forwarder (DPDK-

l2fwd) as a percentile distribution [50] at a packet rate of 10 kpkt/s. The plots for
the higher packet rates are omitted due to their highly similar latency distribu-
tion. We did not observe lost packets, i.e., our system and the DPDK framework
are powerful enough to handle the provided rates without overloading. Up to the
99.9th percentile, all kernels offer a stable latency of approx. 3.3�s . For higher
percentiles, the latency rises to 5.3�s/5.5�s for the vanilla/rt kernel. The latency
of the no-hz kernel only rises to a value of 4.1�s beyond the 99.99th percentile.

Figure 6 shows the 5000 worst-case latency events over the 60-second meas-
urement time. All three measurements show a solid line at 3.3�s , i.e., most
latency events are on or below this line. A regular pattern above this line is visible
for the vanilla and rt kernels. We identified OS interrupts, in this case, the local
timer interrupt (loc), as the root cause for this behavior in previous work [2]. In
the no-hz kernel, the interrupt can be disabled; therefore, the pattern disappears.

The pattern is the result of two clocked processes—OS interrupts and packet
generation. We measure an increased delay on the DuT if the packet processing
task is delayed due to an interrupt being triggered simultaneously. The observed
pattern is an aliasing effect caused by undersampling, i.e., we can see a low-fre-
quency signal that is not part of the original data. A more extensive description
can be found in previous work [2].

In previous work [2, 3], we measured latencies for version 4.19 of the rt and
vanilla kernels using the same scenario and hardware. There, we observed laten-
cies of up to 13.6�s . We attribute this reduction of more than 50 % to kernel opti-
mizations of the interrupt handling. When comparing the results of Fig. 6 to our
previous investigation of the no-hz kernel [1], we noticed a significant improve-
ment. We successfully determined our interrupt monitoring tool as the source of

Fig. 5 Percentile distribution of the latency for DPDK-l2fwd using rt, vanilla, and no-hz Linux kernels at
10 kpkt/s

1 3

Journal of Network and Systems Management (2023) 31:20 Page 15 of 28 20

a periodic 1-second latency increase. Without monitoring the interrupts during
measurements, we could create a highly stable latency behavior.

Suricata-fwd
Suricata was chosen to measure the behavior of a real-world application. For

this measurement scenario, we have disabled the ruleset in Suricata, turning the
intrusion prevention system into a packet forwarding application. We use this
measurement to determine the overhead of Suricata without the impact of rule
application. Figure 7 shows the latency distribution of our measurement for the
three investigated kernels.

For the rt kernel, we observe a higher latency than for the DPDK-l2fwd sce-
nario, with a median latency of 3.8�s . We notice a significant rise in latency
beyond the 99.9th percentile to approx. 6.5�s across all measured packet rates.
For the highest packet rate of 250 kpkt/s, we measure an additional latency
increase to 12.2�s not present in lower rates.

For the vanilla and no-hz kernels, we observe an even higher rise in latency. To
visualize the sharp tail-latency increase without concealing lower percentiles, we
switched to a log scale for both kernels in Fig. 7. Up to roughly the 99.999th per-
centile, latencies are similar to the rt kernel. Beyond this point, the latencies of
the no-hz and vanilla kernels rise up to 635�s , a significant difference compared
to the rt kernel.

Figure 8 shows two selected examples that visualize the worst-case forwarding
latencies over the experiment. The first example shows the forwarding latency
of the rt kernel at a rate of 250 kpkt/s. There, two latency spikes above 10�s

Fig. 6 5000 worst-case latency events for DPDK-l2fwd using rt, vanilla, and no-hz Linux kernels at
10 kpkt/s

 Journal of Network and Systems Management (2023) 31:20

1 3

20 Page 16 of 28

are visible. The other plot shows the latency of the vanilla kernel at a rate of
250 kpkt/s. There, a single spike is the reason for the latency increase.

Similar to our previous studies [2, 3], we assumed interrupts to be the root cause
for the observed latency spikes. To verify our assumption, we used the Linux inter-
rupt counters listed in /proc/interrupts. This list contains a counter for the
different kinds of interrupts triggered since the start of the system. When running
our experiment with different measurement times, we saw the latency spikes when
the TLB shootdown counter was incremented. We further investigated the differ-
ences between the low impact of the TLB shootdowns on the rt kernel and the more
significant impact on the vanilla and no-hz kernels. We observed that TLB shoot-
downs happen more rarely on the rt kernel; we attribute this lower number to the
changes introduced by the rt patches.

The TLB shootdowns are mentioned by Rigtorp [8] as a potential source of
latency and jitter. The transition lookaside buffer (TLB) is a cache that accelerates

Fig. 7 Percentile distribution of the forwarding latency on Suricata (no ruleset)

Fig. 8 5000 worst-case latency events for Suricata (no ruleset) using different Linux kernels at 250 kpkt/s

1 3

Journal of Network and Systems Management (2023) 31:20 Page 17 of 28 20

virtual memory address translation by caching previous translation results. Certain
events, such as memory unmapping or changing memory access restrictions, require
a flush of the TLB for all CPU cores. This flush is realized as an interrupt and causes
the observed latency spikes. Rigtorp [8] mentions several cases where the usage of
RAM is reorganized, causing TLB shootdowns. Releasing memory from an applica-
tion back to the kernel can cause TLB shootdowns and should, therefore, be avoided.
He further recommends not using other techniques such as transparent hugepages,
memory compaction, kernel samepage merging, page migration between different
NUMA nodes, or file-backed writable memory mappings.

We attribute the occurrence of latency spikes to the memory management of Suri-
cata and did not find a configuration to avoid them for the no-hz and vanilla kernels.
We did not observe severe latency spikes for the rt kernel. Figure 7 includes exam-
ples of measurements without latency spikes. We attribute this lack of increased
latency to our 1-minute measurement time. In other measurements, spikes were
observed for these rates.

Another finding of our investigation is the similar behavior of vanilla and no-hz
kernels, contradicting our previous measurements with the DPDK-l2fwd. The differ-
ence between both scenarios is the architecture of the investigated packet process-
ing application. For the DPDK-l2fwd, we could dedicate a forwarding thread exclu-
sively to one core. Without any other thread running on the same cores, the no-hz
kernel disables almost all interrupts for this core. Suricata follows a more complex
multi-threaded architecture involving management and worker threads. In combina-
tion with DPDK, we did not find a configuration that would allow us to create a
dedicated worker core that was not interrupted by other threads. Without exclusive
core usage, the no-hz kernel does not disable any interrupts on the packet process-
ing core, acting the same way a vanilla kernel would—a behavior confirmed by our
measurements. The rt kernel, in contrast, seems to handle the interrupt processing
differently. For the rt kernel (cf. Fig. 7), we measured a higher jitter and a slightly
increased latency. This behavior suggests that the rt kernel handles processing tasks
during interrupts differently, thereby avoiding large spikes.

Suricata-Filter
Figure 9 shows the forwarding latency of Suricata applying its default ruleset.

The increased complexity of the processing task raises latency. We measured a
median latency close to 10�s for all kernels and packet rates between 10 kpkt/s and
150 kpkt/s. For the no-hz and vanilla kernels, we noticed a steep increase in latency
to approx. 600�s starting at the 99.99th percentile. The cause for this increase are
the same interrupts as for the previous scenario. However, these costly interrupts
occur at a higher rate, lowering the percentile for the latency increase. For the rt
kernel, we did not observe this behavior, leading to a more stable and overall lower
worst-case latency.

For all three kernels, we measured an overload scenario, causing packet loss and
an increase in latency up to 2 ms. This measurement shows that Suricata becomes
overloaded at the same forwarding rate of approx. 200 kpkt/s regardless of the used
kernel.

Recommendation II: Avoid Overload Our measurements show that overload
must be avoided on packet processing nodes to keep latency reasonably low.

 Journal of Network and Systems Management (2023) 31:20

1 3

20 Page 18 of 28

Overload leads to packet loss and causes latencies in the ms-range. DPDK offers
a low-overhead framework that can handle significant packet rates without over-
loading; complex applications such as the Suricata IPS can lead to overload sce-
narios if the processing capacity is exhausted. Therefore, a packet processing sys-
tem should be designed with enough spare capacity to handle the expected packet
processing load.

Recommendation III: Choice of Kernel Our measurements have shown that the
Linux kernel can have a significant impact on the latency of packet processing
applications. However, there is no kernel that offers consistently better perfor-
mance across all investigated scenarios. The architecture of the packet processing
application is a decisive factor for kernel selection. The no-hz kernel can dis-
able almost all interrupts if an application thread or process can be hosted on a
single core without the need to share it with other threads. In such a scenario,
the no-hz kernel offers the best latency. For more complex applications, sharing
cores among threads, no-hz does not allow disabling interrupts offering no benefit
over the vanilla Linux kernel. However, our measurements showed that an rt ker-
nel could optimize latency in such a scenario. The tail latency was lower, due to
the lower impact of TLB shootdowns, causing high latency spikes for no-hz and
vanilla kernels. Therefore, we recommend the rt kernel for complex applications
like Suricata and the no-hz kernel for simple applications like the DPDK-l2fwd or
Snort 3 [1]. We further noticed that the worst-case latencies improved when com-
paring a Linux kernel version 5.10 to version 4.19. Thus, we recommend check-
ing different kernel versions, when optimizing for latency.

Fig. 9 Percentile distribution of the forwarding latency on Suricata (with ruleset)

1 3

Journal of Network and Systems Management (2023) 31:20 Page 19 of 28 20

6.2.2 Impact of the NIC

This section investigates the impact of the NIC on the forwarding latency. To meas-
ure the isolated effects of the NIC, we select the DPDK-l2fwd on the no-hz ker-
nel to minimize the impact of OS and application. We compare four different Intel
NICs, the SoC-integrated X552 [47], the dual-port X520-DA2 [45], the quad-port
X710-DA4 [46], and the E810-XXVDA4 [51]. The E810-based NIC supports
25 Gbit/s Ethernet but was used with a 10 Gbit/s link to ensure comparability with
the other NICs. The rest of the measurement setup remained unchanged.

Figure 10 visualizes the forwarding latency for the different NICs at differ-
ent packet rates as a percentile distribution. The oldest NIC in our comparison is

Fig. 10 Percentile distribution of the latency for different Intel NICs. The 10-�s bar is highlighted with a
dash-dotted line for easier comparison

 Journal of Network and Systems Management (2023) 31:20

1 3

20 Page 20 of 28

the X520, which offers a stable and highly similar latency across the investigated
rates. A visible increase in latency starts around the 99.999th percentile; the latency
increases from approx. 3.9�s to 4.5�s . The X552 NIC offers the same stability as
the X520, and the latency distribution follows roughly the same shape. The absolute
values are shifted by 0.5�s , i.e., the X552 is faster than the X520.

For the X710 NIC, we see a stable latency behavior for a packet rate of 10 kpkt/s
that stays below 5�s . However, starting at a rate of 50 kpkt/s, we can see significant
changes in the latency behavior where latency rises from a median of approx. 14�s
to 37�s for the 99th percentile. A closer investigation of the egress traffic shows
that the NIC begins sending bursts of packets. If we increase the rate, the latency
sinks again to approx. 20�s for the 99.9999th percentile; however, the bursty behav-
ior remains. Thus, the latency is not as stable as it was for a rate of 10 kpkt/s. For
the E810 NIC, we see stable latency behavior for rates of 10 kpkt/s and 50 kpkt/s.
Higher rates are again subject to bursty behavior and latency increase.

We attribute the differences in stability to the increased complexity of the NICs
and their controller architectures over time. An indicator for this increased feature
set is the length of the respective data sheet that grew from approx. 1000 pages for
the X520 [45] to over 2700 for the E810 [51]. Also, the size of the firmware present
on the NICs grew over time. The X710 and the E810 possess firmware of several
megabytes; the E810 additionally features a programmable parser that loads addi-
tional software during runtime. Where older NICs, such as the X520, possess a
fixed processing path, newer NICs feature a higher degree of configurability for the
packet processing path. This increased flexibility makes the packet processing path
and latency on the NIC less predictable for newer NIC generations. We attribute the
increased latency to the changes in NIC architecture.

For our tests, we relied on the default configurations provided by DPDK for PCIe
and NIC drivers. Further optimizations were not considered. Please note that X710
and E810-based network controllers were designed for 40 Gbit/s and 100 Gbit/s
bandwidths. In our scenario, we only investigated 10 Gbit/s to ensure compatibility
across the different NICs and our measurement platform. The latency behavior may
be different when operating at higher link bandwidths.

Recommendation IV: Choice of NIC We have shown that the choice of NIC can
significantly impact latency and jitter. Older, low-complexity NICs, such as the Intel
X520 or X552, offer less configurability leading to low, stable latency. Therefore,
the impact of the NIC is low compared to other effects described in this paper. How-
ever, the impact changes when considering more complex NICs, such as the X710
and E810. Newer NIC generations offer a higher degree of flexibility, which in turn
make predicting latency more challenging. Thus, we recommend carefully inves-
tigating the latency in application-specific scenarios, especially when using more
recent NIC architectures.

6.2.3 Impact of Virtualization

We want to investigate the impact of virtualization on packet processing appli-
cations. Therefore, we measure the performance of a virtualized DPDK-l2fwd
application. The application is run on a VM pinned to P-cores 1, 2, and 3 of our

1 3

Journal of Network and Systems Management (2023) 31:20 Page 21 of 28 20

DuT. The OSes on the DuT and the DuT VM use the same, previously described
boot parameters and images. For the impact of virtualization, we only analyze the
impact using the DPDK-l2fwd and the Intel X552 NIC. This simple setup allows
measuring the impact of virtualization in isolation without potential effects
caused by a complex software architecture. Further, the used CPUs could not run
Suricata in a meaningful way. Our setup requires at least two separate p-cores for
the operating systems—on the host and the VM. Suricata requires at least three
cores to run with minimal core sharing among threads. For obvious reasons, this
five-core requirement cannot be met on a quad-core CPU.

Figure 11 shows the effects of virtualization on packet processing applications.
The measurement shows a stable latency of approx. 4�s up to the 99th percentile.
Beyond this point, a significant increase begins, and the different Linux kernel
versions begin to differ. As shown in previous measurements (cf. Fig. 5), the rt
Linux kernel latencies are higher than the latencies of the no-hz and vanilla Linux
kernel. We measure tail latencies for no-hz and vanilla kernel at approx. 11�s and
10�s.

In previous work [1], we measured the latencies for version 4.19 of the no-hz
Linux kernel using the same scenario and hardware. We observed a latency of up
to 4.1�s with virtualization on a no-hz Linux kernel. This shows that the impact
of virtualization is significantly higher on newer kernel and software measured in
this experiment with an increase of approx. 6�s.

Figure 12 shows the worst-case latency behavior over the 60-second measure-
ment period for the virtualized DPDK-l2fwd example on each of the measured
Linux kernel versions. Further analysis of the worst-case events shows a familiar
behavior; a solid horizontal line with most latency events either on or below this
line, above this line, a regular pattern of events. In general, we can see that virtu-
alization leads to an increased number of events in the area above the horizontal
line. The number of events is increased because of the higher number of inter-
rupts, caused by two running operating systems, the VM OS and the host OS. In
addition, the interrupt processing time on the virtualized kernel is increased com-
pared to non-virtualized setups. This leads to a visible impact of virtualization on
the performance of low-latency packet processing systems.

Fig. 11 Percentile distribution of the latency for a virtualized DPDK-l2fwd at 10 kpkt/s

 Journal of Network and Systems Management (2023) 31:20

1 3

20 Page 22 of 28

Figure 12 shows almost identical behavior between the no-hz and the vanilla Linux
Kernels. We assume the interrupts could not be disabled on the no-hz kernel in this
environment. To verify our assumption that interrupts increase the latency, we per-
formed a second measurement run, where we captured the interrupt counters in Linux
during this specific measurement run. We found a correlation between the local timer
interrupts and the increased latency events.

Recommendation V: Choice of Virtualization We have shown that choosing between
virtualized and non-virtualized systems for packet processing impacts latency and jit-
ter. At the same time, we have shown that its price, i.e., the impact of virtualization on
latency, is limited to tail latencies. When using virtualization, the choice of Linux ker-
nel matters. The virtualized no-hz kernel did not offer benefits over a virtualized vanilla
kernel; the tail latency on the virtualized rt kernel is even higher. All three kernels per-
formed worse from a tail-latency perspective than their non-virtualized counterparts.
Due to the negligible impact on latency below the 99th percentile, latency considera-
tions should not prevent the virtualization of applications in general. However, if tail
latencies are the primary optimization goal, a bare-metal system can offer benefits.

Fig. 12 5000 worst-case latency events for virtualized DPDK-l2fwd using rt, vanilla, and no-hz Linux
kernels at 10 kpkt/s

1 3

Journal of Network and Systems Management (2023) 31:20 Page 23 of 28 20

7 Limitations

The measurements presented in this paper have shown that software packet pro-
cessing systems can be tuned to provide sub-microsecond latency with low jit-
ter. However, the low latency and jitter come at a price. The presented system
configurations disable the CPU energy-saving mechanisms. In addition, DPDK
actively polls the NIC, fully loading the allocated CPU cores. We measured the
energy consumption in a previous paper [2]; the entire server consumed 31 W
in an idle state and 47 W when executing a packet processing application. The
majority of this 48-percent increase in energy consumption is caused by the CPU.
While numbers are highly hardware specific, the increase and the CPU being its
main factor can be transferred to other systems.

8 Experiment Data and Reproducibility

A major goal of our research is the creation of reproducible experiments [49].
Therefore, we created a website [52] that explains each measurement presented in
the paper. The experiment artifacts are available in a GitHub repository [53]. The
experiment artifacts include the experiment scripts, measurement data, plotting
scripts, and plots. The investigated applications are open source on GitHub [5,
28]

9 Conclusion

Our measurements show that the latency limbo has much in common with the
actual dance. A set-up latency bar can be easily touched or exceeded with seem-
ingly minor alterations to the investigated software stack. Nevertheless, we show
that, given the proper techniques, the latency bar remains intact. Therefore, we
established our recommendations acting as guiding rails to create reliable, low-
latency packet processing systems:

– Software-based timestamping methods are subjected to the same effects we
investigated in our studies. A measured latency may be caused by the measur-
ing or the measured system causing ambiguous measurement data. To avoid
this problem entirely, we stress the need for hardware-based timestamping, to
provide high accuracy and precision for measurements.

– Overloading a system leads to inevitable packet loss and filled buffers increas-
ing latency; therefore, overload must be avoided. Our measurements have
shown that DPDK and Suricata provide a throughput of several 100 000 pack-
ets per second on a single CPU core. However, when inserting a complex
computation like the IPS rule application into the processing path, the limited

 Journal of Network and Systems Management (2023) 31:20

1 3

20 Page 24 of 28

CPU resources may cause an overload. Providing enough CPU resources or
limiting the number of packets are possible solutions to this problem.

– Our investigation of the different flavors of the Linux kernel has no clear winner.
If a network application process can be hosted on a CPU core exclusively, the
no-hz kernel provides stable and low latencies. The rt kernel offers superior per-
formance if a core is shared between processes. However, we observed situations
where the vanilla kernel performs best, if cores are shared, and TLB shootdowns
did not occur. For the choice of kernel, there is no one-size-fits-all solution; it
requires measurements or an in-depth investigation of the application architec-
ture to find the best fitting kernel.

– In our comparison, we determined the Intel X552 as the NIC with the lowest and
most stable latency. More modern cards were not only slower but also introduced
jitter. If the described NICs are not an option, we recommend testing the desig-
nated NIC architecture before integration to avoid surprising effects on latency
and jitter.

– For virtualization, we measured a noticeable impact on tail latency. The median
or lower-percentile latencies were only slightly increased, demonstrating that vir-
tualization is highly efficient and introduces little overhead to the packet process-
ing path. When optimizing tail latencies, virtualization should be avoided, as we
noticed irregular spikes for all our measurements.

Acknowledgements This project has received funding from the European Union’s Horizon 2020 research
and innovation programme under Grant Agreements Nos. 101008468 and 101079774. Additionally, we
received funding by the Bavarian Ministry of Economic Affairs, Regional Development and Energy as
part of the project 6G Future Lab Bavaria. This work is partially funded by Germany Federal Minis-
try of Education and Research (BMBF) under the projects 6G-life (16KISK001K) and 6G-ANNA
(16KISK107).

Funding Open Access funding enabled and organized by Projekt DEAL.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License,
which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as
you give appropriate credit to the original author(s) and the source, provide a link to the Creative Com-
mons licence, and indicate if changes were made. The images or other third party material in this article
are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the
material. If material is not included in the article’s Creative Commons licence and your intended use is
not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission
directly from the copyright holder. To view a copy of this licence, visit http:// creat iveco mmons. org/ licen
ses/ by/4. 0/.

References

 1. Gallenmüller, S., Wiedner, F., Naab, J., Carle, G.: Ducked tails: trimming the tail latency of(f)
packet processing systems. In: 17th international conference on network and service management,
CNSM Izmir, Turkey, October 25–29, IEEE, 2021. https:// doi. org/ 10. 23919/ CNSM5 2442. 2021.
96155 32

 2. Gallenmüller, S., Naab, J., Adam, I., Carle, G.: 5G QoS: Impact of Security Functions on Latency.
In: NOMS, IEEE/IFIP Network Operations and Management Symposium, Budapest, Hungary,
April 20–24. IEEE 2020, 1–9 (2020). https:// doi. org/ 10. 1109/ NOMS4 7738. 2020. 91104 22

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.23919/CNSM52442.2021.9615532
https://doi.org/10.23919/CNSM52442.2021.9615532
https://doi.org/10.1109/NOMS47738.2020.9110422

1 3

Journal of Network and Systems Management (2023) 31:20 Page 25 of 28 20

 3. Gallenmüller, S., Naab, J., Adam, I., Carle, G.: 5G URLLC: a case study on low-latency intrusion
prevention. IEEE Commun. Mag. 58(10), 35–41 (2020). https:// doi. org/ 10. 1109/ MCOM. 001. 20004
67

 4. NGMN Alliance, 5G E2E Technology to Support Verticals URLLC Requirements, 2019
 5. Suricata repository: https:// github. com/ galle nmu/ suric ata/ tree/ dpdk- 21. 11. Accessed 25 Nov 2022
 6. AMD, Performance Tuning Guidelines for Low Latency Response on AMD EPYC-Based Servers

Application Note. http:// devel oper. amd. com/ wp- conte nt/ resou rces/ 56263- Perfo rmance- Tuning-
Guide lines- PUB. pdf. Accessed 25 Nov 2022, Jun 2018

 7. Mario, J., Eder, J.: Low Latency Performance Tuning for Red Hat Enterprise Linux 7. https:// access.
redhat. com/ sites/ defau lt/ files/ attac hments/ 201501- perf- brief- low- laten cy- tuning- rhel7- v2.1. pdf.
Accessed 25 Nov 2022

 8. Rigtorp, E.: Low latency tuning guide. https:// rigto rp. se/ low- laten cy- guide/. Accessed 25 Nov 2022,
Mar 2020

 9. Beierl, M.: Nfv-kvm-tuning. https:// wiki. opnfv. org/ pages/ viewp age. action? pageId= 29261 79.
Accessed 25 Nov 2022

 10. Li, J., Sharma, N.K., Ports, D.R.K., Gribble, S.D.: Tales of the tail: hardware, OS, and application-
level sources of tail latency. In: Lazowska, E., Terry, D., Arpaci-Dusseau, R.H., Gehrke, J., Eds.
Proceedings of the ACM symposium on cloud computing, Seattle, WA, USA, November 3–5, 2014.
ACM, 2014, 9:1–9:14. https:// doi. org/ 10. 1145/ 26709 79. 26709 88

 11. Popescu, D., Zilberman, N., Moore, A.: Characterizing the impact of network latency on cloud-
based applications’ performance, 2017

 12. Barroso, L.A., Marty, M., Patterson, D.A., Ranganathan, P.: Attack of the killer microseconds.
Commun. ACM 60(4), 48–54 (2017). https:// doi. org/ 10. 1145/ 30151 46

 13. Zhang, Y., Laurenzano, M.A., Mars, J., Tang, L.: SMiTe: precise QoS prediction on real-system
SMT processors to improve utilization in warehouse scale computers. In: 47th annual IEEE/ACM
international symposium on microarchitecture, MICRO: Cambridge, UK, December 13–17, 2014.
IEEE Computer Society 2014, 406–418 (2014). https:// doi. org/ 10. 1109/ MICRO. 2014. 53

 14. Schöne, R., Molka, D., Werner, M.: Wake-up latencies for processor idle states on current x86 pro-
cessors. Comput. Sci. R &D 30(2), 219–227 (2015). https:// doi. org/ 10. 1007/ s00450- 014- 0270-z

 15. Herdrich, A., Verplanke, E., Autee, P., Illikkal, R., Gianos, C., Singhal, R., Iyer, R.: Cache QoS:
from concept to reality in the Intel Xeon E5-2600 v3 Product Family. In: 2016 IEEE International
Symposium on High Performance Computer Architecture, HPCA 2016, Barcelona, Spain, March
12–16, 2016, 2016, pp. 657–668. https:// doi. org/ 10. 1109/ HPCA. 2016. 74461 02

 16. Aleksinski, M. et al.: intel-cmt-cat. https:// github. com/ intel/ intel- cmt- cat. Accessed 25 Nov 2022
 17. Emmerich, P., Raumer, D., Gallenmüller, S., Wohlfart, F., Carle, G.: Throughput and latency of

virtual switching with open vswitch: a quantitative analysis. J. Netw. Syst. Manag. 26(2), 314–338
(2018). https:// doi. org/ 10. 1007/ s10922- 017- 9417-0

 18. Lettieri, G., Maffione, V., Rizzo, L., “A Survey of Fast Packet I, O Technologies for Network Func-
tion Virtualization,” in High Performance Computing - ISC High Performance,: International Work-
shops, Frankfurt, Germany, June 18–22, 2017. Revised Selected Papers 2017, 579–590 (2017).
https:// doi. org/ 10. 1007/ 978-3- 319- 67630-2_ 40

 19. Xu, X., Davda, B.: SRVM: hypervisor support for live migration with passthrough SR-IOV network
devices. In: Proceedings of the 12th ACM SIGPLAN/SIGOPS international conference on virtual
execution environments, Atlanta, GA, USA, April 2–3, 2016, 2016, pp. 65–77. https:// doi. org/ 10.
1145/ 28922 42. 28922 56.

 20. Xiang, Z., Gabriel, F., Urbano, E., Nguyen, G.T., Reisslein, M., Fitzek, F.H.P.: Reducing Latency in
Virtual Machines: Enabling Tactile Internet for Human-Machine Co-Working. IEEE J. Select. Areas
Commun. 37(5), 1098–1116 (2019). https:// doi. org/ 10. 1109/ JSAC. 2019. 29067 88

 21. Zilberman, N., Grosvenor, M.P., Popescu, D.A., Bojan, N.M., Antichi, G., Wójcik, M., Moore,
A.W.: Where has my time gone? In: Passive and active measurement - 18th international confer-
ence, PAM 2017, Sydney, NSW, Australia, March 30–31, 2017, Proceedings, 2017, pp. 201–214.
https:// doi. org/ 10. 1007/ 978-3- 319- 54328-4_ 15.

 22. Ramsauer, R., Kiszka, J., Lohmann, D., Mauerer, W.: Look mum, no VM exits! (almost), CoRR,
vol. abs/1705.06932, 2017. arXiv: 1705. 06932. [Online]. http:// arxiv. org/ abs/ 1705. 06932

 23. Kaiser, R., Wagner, S.: Evolution of the PikeOS Microkernel. In: First international workshop on
microkernels for embedded systems, vol. 50, Jan 2007

 24. Reghenzani, F., Massari, G., Fornaciari, W.: The Real-Time Linux Kernel: a survey on PREEMPT_
RT. ACM Comput. Surv. 52(1), 1–36 (2019). https:// doi. org/ 10. 1145/ 32977 14

https://doi.org/10.1109/MCOM.001.2000467
https://doi.org/10.1109/MCOM.001.2000467
https://github.com/gallenmu/suricata/tree/dpdk-21.11
http://developer.amd.com/wp-content/%20resources/56263-Performance-Tuning-Guidelines-PUB.pdf
http://developer.amd.com/wp-content/%20resources/56263-Performance-Tuning-Guidelines-PUB.pdf
https://access.redhat.com/sites/default/files/attachments/201501-perf-brief-low-latency-tuning-rhel7-v2.1.pdf
https://access.redhat.com/sites/default/files/attachments/201501-perf-brief-low-latency-tuning-rhel7-v2.1.pdf
https://rigtorp.se/low-latency-guide/
https://wiki.opnfv.org/pages/viewpage.action?pageId=2926179
https://doi.org/10.1145/2670979.2670988
https://doi.org/10.1145/3015146
https://doi.org/10.1109/MICRO.2014.53
https://doi.org/10.1007/s00450-014-0270-z
https://doi.org/10.1109/HPCA.2016.7446102
https://github.com/intel/intel-cmt-cat
https://doi.org/10.1007/s10922-017-9417-0
https://doi.org/10.1007/978-3-319-67630-2_40
https://doi.org/10.1145/2892242.2892256
https://doi.org/10.1145/2892242.2892256
https://doi.org/10.1109/JSAC.2019.2906788
https://doi.org/10.1007/978-3-319-54328-4_15
http://arxiv.org/abs/1705
http://arxiv.org/abs/1705.06932
https://doi.org/10.1145/3297714

 Journal of Network and Systems Management (2023) 31:20

1 3

20 Page 26 of 28

 25. n.a., NO
HZ

 : Reducing Scheduling-Clock Ticks. https:// www. kernel. org/ doc/ Docum entat ion/ timers/
NO% 7B% 5C_% 7DHZ. txt. Accessed 25 Nov 2022

 26. Emmerich, P., Raumer, D., Beifuß, A., Erlacher, L., Wohlfart, F., Runge, T.M., Gallenmüller, S.,
Carle, G.: Optimizing latency and CPU load in packet processing systems. In: Proceedings of the
international symposium on performance evaluation of computer and telecommunication systems,
Chicago, IL, USA, July 26–29, 2015, IEEE, 2015, 6:1–6:8. https:// doi. org/ 10. 1109/ SPECTS. 2015.
72852 75.

 27. Salim, J.H.: When napi comes to town. In: Linux 2005 conference 2005
 28. DPDK repository. https:// github. com/ galle nmu/ dpdk-1/ tree/ 21. 11- low- laten cy. Accessed 25 Nov

2022
 29. Høiland-Jørgensen, T., Brouer, J.D., Borkmann, D., Fastabend, J., Herbert, T., Ahern, D., Miller,

D.: The eXpress Data Path: fast programmable packet processing in the operating system kernel. In:
Proceedings of the 14th international Conference on emerging Networking EXperiments and Tech-
nologies, CoNEXT 2018, Heraklion, Greece, December 04-07, 2018, 2018, pp. 54–66. https:// doi.
org/ 10. 1145/ 32814 11. 32814 43.

 30. Deri, L.: nCap: wire-speed packet capture and transmission. In: Third IEEE/IFIP workshop on end-
to-end monitoring techniques and services, E2EMON: 15th May 2005. Nice, France, IEEE Com-
puter Society 2005, 47–55 (2005). https:// doi. org/ 10. 1109/ E2EMON. 2005. 15644 68

 31. Rizzo, L.: netmap: a novel framework for fast packet I/O. In: Heiser, G., Hsieh, W.C., Eds., 2012
USENIX annual technical conference, Boston, MA, USA, June 13–15, 2012. USENIX Association,
2012, pp. 101– 112. https:// www. usenix. org/ confe rence/ useni xsecu rity12/ techn ical- sessi ons/ prese
ntati on/ rizzo

 32. Gallenmüller, S., Emmerich, P., Wohlfart, F., Raumer, D., Carle, G.: Comparison of frameworks
for high-performance packet IO. In: Proceedings of the eleventh ACM/IEEE symposium on archi-
tectures for networking and communications systems, ANCS 2015, Oakland, CA, USA, May 7–8,
2015, IEEE Computer Society, 2015, pp. 29–38. https:// doi. org/ 10. 1109/ ANCS. 2015. 71101 18

 33. Emmerich, P.,Gallenmüller, S.,Raumer, D., Wohlfart, F., Carle, G.: MoonGen: a scriptable high-
speed packet generator. In: Cho, K., Fukuda, K., Pai, B.S., Spring, N., Eds., Proceedings of the 2015
ACM internet measurement conference, IMC 2015, Tokyo, Japan, October 28–30, 2015. ACM,
2015, pp. 275–287. https:// doi. org/ 10. 1145/ 28156 75. 28156 92

 34. Emmerich, P., Gallenmüller, S., Antichi, G., Moore, A.W., Carle, G.: Mind the gap - a compari-
son of software packet generators. In: ACM/IEEE symposium on architectures for networking and
communications systems, ANCS, Beijing, China, May 18–19, IEEE Computer Society, 2017, pp.
191–203. https:// doi. org/ 10. 1109/ ANCS. 2017. 32

 35. Antichi, G., Shahbaz, M., Geng, Y., Zilberman, N., Covington, G.A., Bruyere, M., McKeown, N.,
Feamster, N., Felderman, B., Blott, M., Moore, A.W., Owezarski, P.: OSNT: open source network
tester. IEEE Netw. 28(5), 6–12 (2014). https:// doi. org/ 10. 1109/ MNET. 2014. 69154 33

 36. Silicom, Datasheet PE310G4TSF4I71. https:// www. silic om- usa. com/ wp- conte nt/ uploa ds/ 2016/ 08/
PE310 G4TSF 4I71- Progr ammab le- Appli cation- Accel erati on- 10G. pdf. Accessed 25 Nov 2022

 37. Primorac, M., Bugnion, E., Argyraki, K.J.: How to measure the killer microsecond. Comput. Com-
mun. Rev. 47(5), 61–66 (2017). https:// doi. org/ 10. 1145/ 31550 55. 31550 65

 38. Zhang, X., Li, C., Zheng, W.: Intrusion prevention system design. In: 2004 international conference
on computer and information technology (CIT 2004), 14–16 September 2004, Wuhan, China, IEEE
Computer Society, 2004, pp. 386–390. https:// doi. org/ 10. 1109/ CIT. 2004. 13572 26

 39. Albin, E., Rowe, N.C.: Realistic Experimental Comparison of the Suricata and Snort Intrusion-
Detection Systems. In: 26th International Conference on Advanced Information Networking and
Applications Workshops, WAINA 2012, Fukuoka, Japan, March 26–29, 2012, L. Barolli, T. Enok-
ido, F. Xhafa, and M. Takizawa, Eds., IEEE Computer Society, 2012, pp. 122–127. https:// doi. org/
10. 1109/ WAINA. 2012. 29

 40. Julien V., et al.: Suricata User Guide. https:// suric ata. readt hedocs. io/ en/ latest/. Accessed 25 Nov
2022

 41. Julien, V., Simis, L.: dpdk: initial support with workers runmode. https:// github. com/ OISF/ suric ata/
commit/ a7fae d1245 0b85e 91088 68861 72374 1fc93 716fa. Accessed 25 Nov 2022

 42. Gupta, A., Sharma, L.S.: Performance Evaluation of Snort and Suricata Intrusion Detection Sys-
tems on Ubuntu Server. In: Proceedings of ICRIC 2019, Springer, 2020, pp. 811–821

 43. Intel 64 and IA-32 Architectures Software Developer’s Manual, 325462- 075US, Intel, Jun 2021
 44. ISO 5725-1: 1994: Accuracy (Trueness and Precision) of Measurement Methods and Results-Part 1:

General Principles and Definitions. International Organization for Standardization, 1994

https://www.kernel.org/doc/Documentation/timers/NO%7B%5C_%7DHZ.txt
https://www.kernel.org/doc/Documentation/timers/NO%7B%5C_%7DHZ.txt
https://doi.org/10.1109/SPECTS.2015.7285275.
https://doi.org/10.1109/SPECTS.2015.7285275.
https://github.com/gallenmu/dpdk-1/tree/21.11-low-latency
https://doi.org/10.1145/3281411.3281443.
https://doi.org/10.1145/3281411.3281443.
https://doi.org/10.1109/E2EMON.2005.1564468
https://www.usenix.org/conference/usenixsecurity12/technical-sessions/presentation/rizzo
https://www.usenix.org/conference/usenixsecurity12/technical-sessions/presentation/rizzo
https://doi.org/10.1109/ANCS.2015.7110118
https://doi.org/10.1145/2815675.2815692
https://doi.org/10.1109/ANCS.2017.32
https://doi.org/10.1109/MNET.2014.6915433
https://www.silicom-usa.com/wp-content/uploads/2016/08/PE310G4TSF4I71-Programmable-Application-Acceleration-10G.pdf
https://www.silicom-usa.com/wp-content/uploads/2016/08/PE310G4TSF4I71-Programmable-Application-Acceleration-10G.pdf
https://doi.org/10.1145/3155055.3155065
https://doi.org/10.1109/CIT.2004.1357226
https://doi.org/10.1109/WAINA.2012.29
https://doi.org/10.1109/WAINA.2012.29
https://suricata.readthedocs.io/en/latest/
https://github.com/OISF/suricata/commit/a7faed12450b85e9108868861723741fc93716fa
https://github.com/OISF/suricata/commit/a7faed12450b85e9108868861723741fc93716fa

1 3

Journal of Network and Systems Management (2023) 31:20 Page 27 of 28 20

 45. Intel 82599 10 GbE Controller - Datasheet, 331520-005, Rev. 3.4, Intel, Nov 2019
 46. Intel Ethernet Controller X710/XXV710/XL710 Datasheet, 332464-020, Rev. 3.65, Intel, Aug 2019
 47. Intel Ethernet Controller X550 - Datasheet, 333369-005, Rev. 2.3, Intel, Nov 2018
 48. PostgreSQL Global Development Group, PostgreSQL, Jul 2021. https:// www. postg resql. org/
 49. Gallenmüller, S., Scholz, D., Stubbe, H., Carle, G.: The pos Framework: A Methodology and Tool-

chain for Reproducible Network Experiments. In: CoNEXT ’21: The 17th International Conference
on emerging Networking EXperiments and Technologies, Virtual Event, Munich, Germany, Decem-
ber 7–10, ACM, 2021, pp. 259–266. https:// doi. org/ 10. 1145/ 34859 83. 34948 41

 50. Tene, G.: HdrHistogram: A High Dynamic Range Histogram. http:// hdrhi stogr am. org/. Accessed 25
Nov 2022

 51. Intel Ethernet Controller E810 Datasheet, 613875-005, Rev. 2.3, Intel, Sep 2021
 52. Gallenmüller, S., Wiedner, F., Naab, J., Carle, G.: latency-limbo repository. https:// galle nmu. github.

io/ laten cy- limbo. Accessed 25 Nov 2022
 53. Gallenmüller, S., Wiedner, F., Naab, J., Carle, G.: latency-limbo repository. https:// github. com/ galle

nmu/ laten cy- limbo. Accessed 25 Nov 2022

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

Sebastian Gallenmüller received his Ph.D. in 2021 from the Technical University of Munich. He cur-
rently works as a PostDoc at the Chair of Network Architectures and Services led by Prof. Georg Carle
at the Technical University of Munich. His main research interests are programmable packet processing
systems and testbeds for network experiments with a focus on performance analysis and modeling of
packet processing systems.

Florian Wiedner finished his Master of Science in Informatics in 2020 at the Technical University of
Munich where he currently works as a Ph.D. student at the Chair of Network Architectures and Services.
His research focuses on low-latency measurements and low-latency networking on partly virtualized sys-
tems as well as scalability.

Johannes Naab completed his Master of Science in Informatics in 2014 at the Technical University of
Munich. In the same year, he started as a Ph.D. student at the Chair of Network Architectures and Ser-
vices. His research focuses primarily on the development of large-scale cloud architectures and in his free
time he performs Internet-wide measurements.

Georg Carle is Professor at the Technical University of Munich, holding the Chair of Network Architec-
tures and Services. He studied at University of Stuttgart, Brunel University, London, and Ecole Nation-
ale Superieure des Telecommunications, Paris. He did his Ph.D. in Computer Science at University of
Karlsruhe, and worked as postdoctoral scientist at Institut Eurecom, Sophia Antipolis, France, at the
Fraunhofer Institute for Open Communication Systems, Berlin, and as professor at the University of
Tübingen.

Authors and Affiliations

Sebastian Gallenmüller1 · Florian Wiedner1 · Johannes Naab1 ·
Georg Carle1

 Florian Wiedner
 wiedner@net.in.tum.de

 Johannes Naab
 naab@net.in.tum.de

https://www.postgresql.org/
https://doi.org/10.1145/3485983.3494841
http://hdrhistogram.org/
https://gallenmu.github.io/latency-limbo
https://gallenmu.github.io/latency-limbo
https://github.com/gallenmu/latency-limbo
https://github.com/gallenmu/latency-limbo
http://orcid.org/0000-0002-7173-3573
http://orcid.org/0000-0003-2471-9864
http://orcid.org/0000-0002-8808-7643
http://orcid.org/0000-0002-2347-1839

 Journal of Network and Systems Management (2023) 31:20

1 3

20 Page 28 of 28

 Georg Carle
 carle@net.in.tum.de

1 Technical University of Munich, TUM School of Computation, Information and Technology,
Boltzmannstr. 3, 85748 Garching Near Munich, Germany

	How Low Can You Go? A Limbo Dance for Low-Latency Network Functions
	Abstract
	1 Introduction
	2 Motivating Example
	3 Background and Related Work
	4 Low-Latency System Design
	4.1 OS-Specific Techniques
	4.2 Application-Specific Techniques

	5 Measurement Methodology
	6 Evaluation
	6.1 Setup
	6.2 Results
	6.2.1 Impact of the Linux Kernel
	6.2.2 Impact of the NIC
	6.2.3 Impact of Virtualization

	7 Limitations
	8 Experiment Data and Reproducibility
	9 Conclusion
	Acknowledgements
	References

