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Abstract
Throughput is a commonly used performance indicator for networks. However, 
throughput may be considered insignificant if data is outdated or networks become 
unpredictable or unreliable. Critical services may even prioritize latency, predict-
ability, and reliability at the expense of throughput to avoid detrimental effects on 
service operation. Latency, predictability, and reliability are distinct qualities real-
ized in real-time systems. Real-time systems often require additional effort using 
non-standard interfaces, requiring customized software, or providing low through-
put figures. This work picks up the challenge and investigates a single-server net-
work function—a building block for end-to-end low-latency network applications. 
Assessing reliability and quantifying low latency is equally challenging, as sub-
microsecond latency and 1∕105 loss probability leave little room for error. Both, our 
measurement and the investigated platforms, rely on Linux running on off-the-shelf 
components. Our paper provides a comprehensive study on the impact of various 
components on latency and reliability, such as the central processing unit (CPU), the 
Linux Kernel, the network card, virtualization features, and the networking applica-
tion itself. We chose Suricata, an intrusion prevention system (IPS), representing a 
widely deployed, typical network application as our primary subject of investigation.

Keywords Ultra reliable · Low latency · DPDK · Network experiment · Intrusion 
prevention
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1 Introduction

5G networks provide a dedicated service for ultra-reliable and low-latency com-
munication (URLLC) that requires end-to-end reliability up to 6-nines and 
latency as low as 1 ms [4]. Investigating URLLC-compliance involves two chal-
lenges. First, we need measurement facilities and tools. Our experimental plat-
form must be capable of accurately and precisely determining sub-ms latency. 
The reliability of the measurement system is key to observing rare events. Sec-
ond, we want to investigate the design of a software stack capable of hosting 
URLLC applications. Thus, we need to understand the performance of multiple 
interacting system components impacting network input / output (IO), such as the 
network interface card (NIC), the central processing unit (CPU), the operating 
system (OS), and the application itself.

URLLC requirements are especially challenging for systems that involve soft-
ware packet processing systems. Packet processing tasks, hosted on off-the-shelf 
hardware, are subject to slow memory accesses, operating system interrupts, or 
system resources shared across different processes. Such adversities may intro-
duce undesirably high latency, preventing the successful operation of URLLC. 
This work describes, applies, and measures various hardware acceleration tech-
niques and an optimized software stack to provide URLLC-compliant service lev-
els. In this work, we target a security-related network function common to many 
deployments, not only 5G. Here, we investigate Suricata  [5], a widely deployed 
intrusion prevention system (IPS). This investigation considers both quality and 
throughput in the investigation of an IPS.

We aim to achieve the following goals in our paper:

– establishing a measurement methodology and platform that allows accurate and 
precise latency measurements with a particular focus on tail-latency behavior;

– creating a highly optimized software stack for predictable low-latency network 
functions on off-the-shelf hardware;

– demonstrating the performance of our software stack depending on various sys-
tem components such as the Linux kernel, different NICs, and virtualization; and

– deriving guidelines to design and operate applications with a predictably low 
latency.

The remainder of the paper is structured as follows: We present a motivating 
example demonstrating the impact of latency and the importance of optimizing 
systems towards ultra-low latency in Sect.  2. Section 3 introduces related work 
and the underlying techniques. Based on these techniques, we create a low-
latency software stack in Sect. 4. In Sect. 5, we present our measurement method-
ology and toolchain. Section 6 determines the impact of the previously described 
technologies and derives guidelines for creating low-latency systems. The limita-
tions of the described solutions are discussed in Sect. 7. All experiment artifacts 
used in this paper are publicly available; a short introduction how to reproduce 
our research is given in Sect. 8. Finally, Sect. 9 concludes the paper.
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2  Motivating Example

To demonstrate the impact of a typical packet processing task on latency, we 
measured an application running on a server based on off-the-shelf hardware. The 
investigated application is Suricata, an IPS. We measured the latency between the 
ingress and egress port of our IPS for each packet. To avoid packet losses due to 
overload, our measurement uses a constant packet rate of 10 kpkts/s, well below 
the maximum capacity that the IPS can handle. To determine the latency, we used 
hardware timestamps taken on a separate device to ensure that the observed laten-
cies were caused by Suricata, not the measurement device.

A starting application may be subject to higher latencies caused by memory 
allocation or empty caches. We are only interested in steady-state behavior; there-
fore, we cut the first second of measurement data. Figure 1 shows a scatter plot 
of the measured forwarding latency. We filtered for the 5000 worst-case laten-
cies, taken over a 60-second measurement run. We observed a median latency 
of 47�s and sudden latency spikes up to 1.8 ms. Repeated measurements led to 
similar latency spikes. However, we could not determine a regular pattern for 
these spikes; thus, the latency may suddenly increase, randomly impacting the 
IPS latency.

This example measurement demonstrates that despite favorable conditions—
moderate traffic and pre-loaded application—the investigated system neither pro-
vides low nor predictable latency. The height and the randomness of the spikes 
disqualify such a system to be used for reliable communication, such as URLLC. 
At the same time, the example highlights the potential for improvement. We 
measured a 38-fold difference between median and worst-case values. Therefore, 
we investigate various techniques that promise the realization of services with 
predictably low latency on off-the-shelf systems. If we improve worst-case laten-
cies significantly, URLLC-compliant packet processing in software running on 
off-the-shelf hardware becomes feasible.

Fig. 1  Worst-case forwarding latencies of Suricata
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3  Background and Related Work

This section introduces the background and related work investigating various 
studies and system components that may introduce latency for packet processing 
systems. We focus our investigation on software packet processing systems based 
on Linux and off-the-shelf hardware components. In addition, we examine intru-
sion prevention systems.

Low-Latency Measurements Several guides exist for tuning Linux  [6–9] to reduce 
the latency for packet processing applications through measures such as core isola-
tion, disabling virtual cores or energy-saving mechanisms, and reducing the number 
of interrupts. Li et al. [10] investigate the latency of Nginx and Memcached, focus-
ing on rare latency events. Their investigations stress the importance of tail-latency 
analysis, especially considering network applications that perform the same tasks 
with high repetition rates. Higher repetition rates increase the probability of observ-
ing seemingly rare events and their impact on the overall application performance. 
Popescu et  al.  [11] demonstrate that latency increases as low as 10�s can have a 
noticeable impact on applications, e.g., Memcached. A study by Barroso et al. [12] 
demonstrates the need for �s-scale latency IO in data center applications. They pro-
pose a synchronized programming model to simplify application development for 
low-latency applications. In previous work  [2, 3], we demonstrated that high reli-
ability and low latency could be achieved on off-the-shelf hardware and virtualized 
systems, using a DPDK-accelerated Snort. However, the latency was still subject to 
interrupts causing latency spikes in the �s-range.

Hardware Properties HyperThreading (HT), also called simultaneous multi-
threading (SMT), is a feature of modern CPUs that allows addressing physical cores 
(p-cores) as multiple virtual cores (v-cores). Each p-core has its own physically sep-
arate functional units (FU) to execute processes independently. If multiple v-cores 
are hosted on a common p-core, FUs are shared between them. Zhang et  al.  [13] 
demonstrate that sharing FUs between v-cores can impact application performance 
when executing processes on v-cores instead of physically separate p-cores.

Another feature of modern CPUs is the support of sleep states, which lower 
CPU clock frequency and power consumption. Switching the CPU from an 
energy-saving state to an operational state leads to wake-up latencies. Schöne 
et  al.  [14] measured wake-up latencies between 1�s and 40�s for Intel CPUs 
depending on the state transition and the processor architecture.

Despite having physically separate FUs, p-cores share a common last-level 
cache (LLC). Therefore, processes running on separate p-cores can still impact 
each other competing on the LLC. Herdrich et  al.  [15] observed a performance 
penalty of 64% for a virtualized, DPDK-accelerated application when running in 
parallel with an application utilizing LLC heavily. The uncontended application 
performance can be restored for the DPDK application by dividing the LLC stati-
cally between CPU cores utilizing the cache allocation technology (CAT) [15, 16] 
of modern Intel CPUs.

Low-Latency VM IO Transferring packets into/out of a virtual machine (VM) 
leads to significant performance penalties compared to bare-metal systems. 
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Emmerich et al. [17] compared packet forwarding in bare-metal and VM scenar-
ios, demonstrating that VMs can introduce high tail latencies of 350�s and above. 
They also demonstrated that DPDK could help improve forwarding latencies but 
must be used on the host system and the VM.

Furthermore, modern NICs, supporting single-root IO virtualization (SR-IOV), 
can be split into several independent virtual functions, which can be used as inde-
pendent NICs and bound to VMs exclusively. In this case, virtual switching is done 
on the NIC itself, minimizing the software stack involved in packet processing. In 
an investigation by Lettieri et  al.  [18], SR-IOV, among other techniques for high-
speed VM-based network functions, is one of the fastest techniques with the low-
est CPU utilization. Therefore, the latency performance of SR-IOV is superior to 
software switches; e.g., Xu and Davda  [19] measured an almost 10-fold increase 
in worst-case latencies for a software switch. Xiang et al.  [20] create and evaluate 
an architecture for low-latency network functions. Their architecture provides sub-
millisecond latencies, but they do not investigate the worst-case behavior. Zilberman 
et  al.  [21] give an in-depth latency analysis of various applications and switching 
devices. They stress the need for tail-latency analysis to analyze application perfor-
mance comprehensively.

The topic of VM-based network functions has been extensively researched in lit-
erature [18–20]. However, given our motivating example in Sect. 2 and the impor-
tance of the URLLC service, we argue, similar to Zilberman et  al.  [21], that the 
crucial worst-case behavior needs close attention. Hence, we aim to create the low-
est latency system achievable by utilizing available applications on off-the-shelf 
hardware.

There are also embedded systems such as jailhouse [22] or PikeOS [23] that can 
partition the available hardware providing real-time guarantees for user processes or 
VMs. However, they are either incompatible with standard Linux interfaces such as 
libvirt or replace the host OS entirely. Therefore, the tool support for these special-
ized hypervisors is worse compared to more widespread solutions such as Xen or the 
kernel-based virtual machine (KVM) utilizing the libvirt software stack. Thus, we 
do not consider these specialized solutions for this work but rely on well-established 
software tools and hardware.

Kernel
Reghenzani et al. [24] present an extensive survey on the evolution and features of 

real-time Linux. Real-time capabilities are added to the regular or vanilla Linux ker-
nel through a set of patches. Over time, these rt patches were incrementally added to 
the mainline kernel code. A significant feature of these patches is the predictability 
they introduce to the Linux kernel. They achieve this by increasing the preemptabil-
ity of kernel code. By allowing preemptability to formerly non-interruptable parts of 
the kernel code, applications can be scheduled more regularly, avoiding long phases 
of non-activity.

The Linux kernel uses scheduling-clock interrupts, or short ticks, for scheduling 
processes [25]. With the introduction of the tickless kernel, these interrupts can be 
entirely disabled for specific cores if the no-hz-full mode is enabled. A no-hz-full 
core that runs a single process exclusively, disables its ticks and can execute this 
process in an almost interrupt-free mode. Hosting more than one process on such a 
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core re-enables the tick. The no-hz-full mode can be enabled for all but one core on 
a system. The remaining core always operates in the non-tickless mode executing 
potential scheduling tasks for the other cores.

Because of the high relevance of interrupt handling on latency [1–3, 17], we want 
to investigate the latency impact of the different Linux kernel variants. In this work, 
we create Linux images with the vanilla, rt, and no-hz kernels being the only differ-
ence between them, to ensure comparable results.

Kernel Bypass Techniques Another possible cause for OS interrupts is the occur-
rence of IO events, e.g., arriving packets, to be handled by the OS immediately. 
Interrupt handling causes short-time disruptions for currently running processes. 
The ixgbe network driver  [26] and Linux  [27] employ moderation techniques 
to minimize the number of interrupts and, therefore, their impact on processing 
latency. Both techniques were introduced as a compromise between throughput and 
latency optimization. For our low-latency design goal, neither technique is optimal, 
as the interrupts—although reduced in numbers—cause irregular variations in the 
processing delay, which should be avoided.

DPDK [28], a framework optimized for high-performance packet processing, pre-
vents triggering interrupts for network IO entirely. It ships with its own userspace 
drivers, which avoid interrupts but poll packets actively instead. This leads to execu-
tion times with only minor variation also due to DPDK’s preallocation of memory 
and a lack of costly context switches between userspace and kernelspace. However, 
polling requires the CPU to wake up regularly, increasing energy consumption.

The Linux Kernel’s XDP does not bypass the entire kernel but its network stack, 
offering throughput and latency improvements [29]. However, in a direct compari-
son with DPDK, they measured a higher forwarding latency for XDP ( 202�s vs. 
189�s ). XDP uses an adaptive interrupt-based process for packet reception. Though 
conserving energy, compared to DPDK’s polling strategy, it leads to higher latencies 
for low packet rates.

PF_RING [30] is a packet processing framework that follows a design philoso-
phy similar to DPDK, shifting the packet processing to userspace. The netmap [31] 
framework, like XDP, was designed with OS integration in mind. It uses system calls 
for packet reception and transfer. Though the number of system calls is reduced, net-
map still has a higher overhead, increasing the cost and latency of packet IO. In a 
direct comparison between DPDK, PF_RING, and netmap, DPDK offered higher 
throughput than netmap and PF_RING, and the latency of DPDK was equal to PF_
RING and lower than netmap’s latency [32].

Measurement Methodology MoonGen [33] offers accurate and precise hardware 
timestamping on widely available Intel NICs (cf. Sect. 5). However, due to hardware 
limitations, most 10G NICs cannot timestamp the entire traffic, but a small frac-
tion of it (approx. 1 kpkt/s). We also demonstrated that creating reliable timestamp 
measurements using software packet generators is challenging  [34]. Although the 
software solution can timestamp high throughput rates, its expressiveness is limited. 
The software timestamping process is subject to effects that impact measurements 
such as interrupts, causing latency spikes on the investigated system. This behavior 
makes it hard to attribute latency spikes to either the investigated system or the load 
generator.
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Dedicated timestamping hardware  [35, 36] offers line-rate high-precision and 
high-accuracy timestamping on multiple 10G Ethernet ports but requires additional 
hardware, increasing the costs of the measurement setup. A study by Primorac 
et  al.  [37] compared MoonGen’s timestamping to various software and hardware 
timestamping solutions. They concluded that MoonGen’s hardware timestamping 
method offers a similar accuracy and precision compared to a professional times-
tamping hardware solution. Further, they recommend hardware timestamping solu-
tions for investigating latencies in the �s-range.

Intrusion Prevention Intrusion prevention systems are a combination of a firewall 
with an intrusion detection system. IPSes detect and react to intrusions by identi-
fying and blocking harmful network flows [38]. Security-related network functions 
like IPS can be subjected to quality of service requirements, for instance, in 5G 
URLLC.

Our previous studies have demonstrated a maximum latency of approx. 120�s 
at a maximum packet rate of 60  kpkt/s for a DPDK-accelerated Snort IPS  [2]. A 
reliable, low-latency service is possible using off-the-shelf hardware when certain 
operating conditions are met, e.g., exclusive access to system resources or the avail-
ability of sufficient compute resources.

A study by Albin et al. [39] measures the performance of the Suricata IPS [5] to 
be equal to or higher than the performance of Snort. Suricata’s architecture allows an 
approximately linear growth in performance with the number of cores. Suricata sup-
ports various kernel bypass frameworks such as PF_RING, netmap, or XDP [40]. 
DPDK support for Suricata was introduced in December 2021 [41]. Its progressive 
software architecture and the recently added DPDK support promise equal or better 
performance than a DPDK-accelerated Snort. This combination makes Suricata an 
attractive subject for further investigation compared to our previous Snort-centered 
studies.

Evaluation of the State of the Art Increased requirements regarding latency and 
reliability demand a reevaluation of measurements and their methodology. Based 
on state-of-the-art technologies such as kernel bypass, real-time Linux kernels, 
and hardware-accelerated virtualization, we aim to create a software stack archi-
tecture that removes interrupts entirely, to provide ultra-reliability combined with 
low latency. At the same time, we need a powerful measurement infrastructure and 
measurement approach to observe these systems with the necessary accuracy and 
precision. Therefore, we present a measurement methodology that can handle the 
challenging scenario of high packet throughput paired with precise and accurate 
latency measurements.

4  Low‑Latency System Design

This section describes the critical factors of our low-latency system design. We 
continue the work presented in previous studies [1–3] and present the derived low-
latency system design based on various tuning guides [6–9]. In particular, we focus 
our investigation on an updated software stack relying on DPDK 21.11, Debian 11 
using Kernel 5.10, and Suricata 7.0. Additionally, we investigate further system 
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components impacting forwarding latency, such as the NIC, virtualization, or soft-
ware architectures.

Suricata was chosen as a typical example of a security network function. To pro-
vide a secure network, such functions need to be applied to a significant portion of 
the traffic, thereby potentially increasing the latency of every investigated packet. 
In addition, these security functions may introduce high tail latencies (cf. Sect. 2), 
violating quality of service requirements such as the 1-ms goal of URLLC connec-
tions. In the past, we investigated the Snort 3 IPS [1–3]. In this work, we focus on 
the Suricata IPS. The architecture of Suricata is focused on multi-core architectures 
in contrast to Snort, impacting processing performance [42]. Because of these differ-
ences, Suricata was chosen as the primary target for this paper.

4.1  OS‑Specific Techniques

In the following, we discuss various techniques that can be used to optimize OS set-
tings to create a low-latency environment for hosting packet processing applications.

Figure 2 visualizes the distribution of CPU cores between host OS and the differ-
ent applications used on top. For the given three-core CPU, the host OS uses P-core 
0 exclusively; the intrusion detection software runs on P-cores 1 and 2, with P-core 
1 dedicated to a management thread and P-core 2 to a worker thread performing the 
packet processing tasks. The isolcpu ( ) boot parameter enforces this isolation by 
preventing the Linux scheduler from scheduling other processes onto the isolated 
cores. In Fig. 2, P-cores 1 and 2 are isolated. According to this configuration, the OS 
cannot schedule processes onto P-cores 1 and 2, creating the perfect environment for 
the uninterrupted execution of our packet processing application.

Our previous work [2] shows that OS interrupts happen on isolated cores, caus-
ing latency spikes up to approx. 20�s . The boot parameter nohz_full ( ) disables 
scheduling interrupts on specific cores when they are only executing a single thread. 
However, neither the vanilla nor the real-time (rt) kernel of Debian were compiled 
with the necessary options enabled. Therefore, the kernel must be recompiled with 
the configuration options CONFIG_NO_HZ_FULL and CONFIG_RCU_NOCB_
FULL activated. The read-copy-update (RCU) is a synchronization mechanism in 
the Linux kernel that may cause callbacks handled by interrupts on specific cores. 

Fig. 2  Software stack architecture
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The two boot parameters rcu_nocbs ( ) and rcu_nocb_poll ( ) shift in-kernel RCU 
handling to different cores, avoiding interrupts on the nohz-enabled cores.

Devices, such as NICs, can trigger interrupts to signal the reception of new pack-
ets. Setting the irqaffinity ( ) to P-core 0 forces them to be handled on the desig-
nated OS core, avoiding network-induced interrupts for all other cores. The packets 
received via DPDK do not use this mechanism, but the receiving application polls 
for new packets.

To keep the CPU always in its most reactive state, we use the options idle ( ) 
and intel_idle.max_cstate ( ). In addition, the intel pstate driver is disabled to avoid 
switching the CPU into power-saving states (intel_pstate, ). Switching off energy-
saving mechanisms can improve latency beyond the 99.99th percentile by approx. 
10�s according to Primorac et al. [37].

Linux assumes the time stamp counter (TSC) clock to be unreliable and regu-
larly checks whether the TSC frequency is correct. The option tsc=reliable ( ) 
disables these regular checks avoiding interrupts [9]. These checks can be disabled 
safely for modern Intel Core-based microarchitectures, where the TSC is invariant, 
i.e., independent of the CPU’s clock frequency  [43]. Correcting errors and scan-
ning for errors can cause additional periodic latency spikes in our measurements, 
mce=ignore_ce ( ) ignores corrected errors. The parameter audit=0 ( ) disables the 
internal audit subsystem, which causes load on each core, interrupting programs.

In addition, using nmi_watchdog=0 ( ) disables another watchdog. This watch-
dog uses the infrastructure of the perf profiling utility, causing additional overhead 
for our low-latency system. The option skew_tick=1 ( ) shifts the periodic ticks 
between different CPU cores. This helps to avoid resource contention initiated by a 
tick happening on all CPU cores simultaneously. For diagnostic purposes, the Linux 
kernel creates logs for long-running processes. The parameter nosoftlockup ( ) 
disables these logs, as we want to avoid the logging overhead for our investigated 
application [7].

We compiled a list of used parameters and the respective values in Table 1. Each 
parameter is labeled to link the explanation in the previous text with the table. This 
list briefly introduces the applied measures to lower unwanted interruptions for our 
packet processing application.

Some additional settings need to be set on the corresponding machine during 
runtime. We set the virtual memory statistics collector interval to 3600 s for reduc-
ing the time of recalculating those statistics. The Intel CAT tool [16] is used to stati-
cally assign the LLC to cores, reducing delays caused by cache contention.

4.2  Application‑Specific Techniques

In this subsection, we discuss the techniques that should be considered when creat-
ing a low-latency network application. As an application framework, we suggest the 
usage of DPDK to reduce the impact of the Linux Kernel on networking applica-
tions. DPDK shifts the entire packet processing tasks, including drivers, to the user-
space. DPDK’s drivers poll the NIC for new packets, entirely avoiding interrupts. 
By preventing these packet reception interrupts, packet processing happens more 
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predictably. Several similar kernel bypass frameworks exist. However, DPDK’s 
strictly polling-based reception promises the lowest possible latency compared to 
the other frameworks, such as XDP, netmap, or PF_RING (cf. Sect. 3). The Linux 
networking API (NAPI) reduces the number of interrupts generated but still relies 
on them [27]. Therefore, the NAPI itself will cause interrupts, impacting network 
performance and latency. To incorporate further NICs into our measurement, we use 
DPDK 21.11, which supports newer NICs, such as the Intel E810. The architecture 
of the NIC can have an additional impact on latency (cf. Sect. 6.2.2). For compari-
son, have we compiled the measurements using the same hardware setup as in previ-
ous works [1–3].

5  Measurement Methodology

This section presents the main challenges of performing sub-microsecond latency 
measurements. Afterward, we describe our toolchain and measurement setup for our 
subsequent case study.

Reliability We assess the reliability of a connection by quantifying its packet loss. 
In the context of this paper, the highest level of reliability is achieved if no packets 
are lost between the ingress and the egress port of an investigated system. Reliability 
is equally crucial for the measurement equipment, i.e., no packet loss should happen 
for the traffic sent to and received from an investigated system. A highly reliable, 
i.e., loss-free, measurement system is essential to measure rare latency events, as 
these events may be missed on a lossy measurement system.

Accuracy vs. Precision The quality of latency measurements can be evaluated 
along two dimensions—accuracy and precision. According to ISO  [44], accu-
racy describes the “closeness of agreement between a test result and the accepted 

Table 1  Latency optimized bootparameters

Parameter Value Description

isolcpus [cores] Isolate from kernel scheduler
nohz_full [cores] No timer ticks
rcu_nocbs [cores] No RCU callbacks
rcu_nocbs_poll No RCU callback threads wake-up
irqaffinity 0 Interrupts on specific core
idle poll Poll mode when core idle
intel_idle.max_cstate 0 Limit CPU to c-state
intel_pstate disable Power state driver disabled
tsc reliable Rely on TSC without check
mce ignore_ce Ignore corrected errors
audit 0 Disable audit messages
nmi_watchdog 0 Disable NMI watchdog
skew_tick 1 No simultaneous ticks for locks
nosoftlookup Disables logging of backtraces
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reference value” and precision refers to the “closeness of agreement between inde-
pendent test results.” Applying these definitions to our measurements, we consider 
accuracy as a measure to describe how close a measured timestamp is to the actual 
event. Precision is defined as the statistical variability between different measure-
ments, i.e., how close the individual measurements are to each other. Low-latency 
measurements require high accuracy, as the already low measurement values reduce 
the tolerable error margin. The difference between accuracy and precision is visu-
alized in Figure 3. A low-precision measurement system may heavily impact tail-
latency measurements through statistical errors introduced by the measurement sys-
tem itself. Therefore, high precision is essential to measure rare events reliably.

Software Timestamping vs. Hardware Timestamping Packet reception on modern 
servers happens asynchronously, i.e., received packets are copied from NIC to RAM 
and reception is signaled to the CPU eventually. Software timestamping can only 
happen after the reception is announced to the CPU, which introduces additional 
latency, causing low accuracy. Without the optimizations mentioned in Sect. 4, inter-
rupts caused by the OS may eventually delay the timestamping process of the CPU, 
causing low precision. The previously mentioned problems do not impact hardware 
timestamps: packets are timestamped shortly and accurately after reception on the 
NIC itself, and they are timestamped precisely, not impacted by OS interrupts. With 
hardware timestamping improving both, precision and latency, hardware timestamp-
ing is the superior measurement method compared to software timestamping.

MoonGen MoonGen  [34] is a packet generator that supports hardware times-
tamping without relying on specialized and expensive hardware. It uses the hard-
ware timestamping features of widely deployed Intel 10G and 40G NICs, such as 
the X520, X550, X710, or XL710 [45, 46]. The hardware timestamping feature was 
integrated into these NICs to provide precise timestamps for the precision time pro-
tocol (PTP). NICs that implement PTP in hardware do typically not support times-
tamping all packets at line rate. Therefore, MoonGen relies on a sampling process, 
i.e., only up to 1 kpkt/s are timestamped. This is a severe limitation, as the sampling 
would require extensive measurement times to observe rare latency events reliably.

To capture tail latencies more effectively, we prefer timestamping the entire 
packet stream. The Intel X550 NIC [47] offers hardware timestamping of all packets 
with a resolution of 12.5 ns. However, the NIC can only timestamp all the received 
packets, not the sent packets. To timestamp the outgoing traffic, we introduce an 
optical splitter or terminal access point (TAP) into our measurement setup. An 
example of such a setup is shown in Fig. 4. In this setup, a separate timestamper 
is introduced that taps into the optical fiber connection. This setup allows times-
tamping the entire ingoing and outgoing unidirectional traffic between the two other 

Fig. 3  Accuracy and precision for latency measurements
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network nodes. The optical splitter allows a third interface to tap into an optical fiber 
connection and timestamp all packets sent by another interface. Tapping works pas-
sively; therefore, only a static offset is introduced to our latency measurements due 
to slightly longer fibers for the measurement setup. The medium propagation speed 
in optical fibers is 0.22 m/ns (based on 0.72  c  [34]). The passive optical splitters 
do not introduce jitter, thus, do not impact the precision of our measurement; the 
impact on accuracy can be corrected if the fiber lengths are known. Using the propa-
gation speed and the length of the fibers in a measurement setup would allow calcu-
lating the increased propagation delay. However, we did not perform this correction 
as the delay introduced by a few meters of additional fibers is still lower than the 
resolution of our timer. MoonGen supports the timestamping method of X550-based 
NICs through a userscript called MoonSniff. We determine the forwarding latency 
in three steps: 

1. We use MoonSniff to record timestamped pcaps of the ingress and egress interface 
of a Device under Test (DuT).

2. We extract packet signatures from the pcaps and import them into a PostgreSQL 
database [48].

3. We match the packets from the ingress pcap to their respective counterpart of the 
egress pcap.

This kind of matching can be efficiently computed using database joins. The join 
operation can be adapted to consider specific parts of the packet, such as an included 
packet counter, to identify matching packets. After the matching packets have been 
identified, the database can calculate the forwarding latency using the packets’ 
timestamps. In this database-driven approach, different analyses are realized as SQL 
statements. We use PostgreSQL to calculate packet transfer and loss rates, maximum 
and minimum latency values, latency percentiles, latency and jitter histograms, and 
worst-case latency time series.

This section has introduced the challenges for sub-microsecond latency measure-
ments and a methodology to ensure the quality of these measurements. Based on 
these findings, we deduct the first recommendation, to be used to create a measure-
ment setup optimized for sub-microsecond measurements:

Recommendation I: Measurement Setup Software timestamping on the meas-
urement systems is subject to effects that may impact the quality of measurements. 
Hardware timestamping can help avoid these effects, ensuring high accuracy and 
precision. Both quality measures are essential for observing short and rare events, 
as minor deviations in the measurement may heavily impact the output. We recom-
mend exclusively using hardware timestamping on affordable off-the-shelf hardware 

Fig. 4  Setup overview
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to minimize the measurement effort and cost while maximizing measurement 
quality.

6  Evaluation

This section introduces the measurement setup, our measurement methodology, and 
results.

6.1  Setup

The setup, shown in Fig. 4, is based on the presented measurement methodology. 
Our setup involves three nodes, the DuT hosting different applications, the LoadGen 
connected to the DuT via two 10G links, and the Timestamper that monitors both 
links passively via optical splitters. We kept hardware and software identical to our 
previous work [1–3], to generate easily comparable results. All three nodes use the 
Intel Xeon D-1518 SoC (4 × 2.2 GHz) and its integrated Intel 10G dual-port X552 
NIC. The DuT was further equipped with three Intel NICs, based on the Intel 82599, 
X710, and E810 controllers, to investigate the impact of different NICs on latency. 
The DuT runs Debian bullseye (kernel v5.10) with the different kernels described 
in Sect. 3. We use KVM as hypervisor and DPDK version 21.11. We want to meas-
ure the packet loss and latency of applications with different complexity. The first 
investigated application is a basic L2 forwarder included in DPDK [28]. This basic 
packet processing application is investigated to provide an artificially simple exam-
ple demonstrating the best-case performance. The second application is Suricata 
v7.0  [5], an example of a more complex, real-world packet processing application 
and its performance.

We test using constant bit-rate traffic with 64 B-sized packets. All measurements 
were repeated with packet rates between 10 kpkt/s and 250 kpkt/s. We select UDP 
to avoid any impact of TCP congestion control on latency. The payload of the gen-
erated traffic contains an identifier for matching the different packets for the subse-
quent latency calculation.

The experiments were conducted in our testbed using the pos framework utilizing 
an automated experiment workflow to ensure reproducible results [49].

6.2  Results

We try to determine the effects of specific system changes on latency. Therefore, we 
start our measurement with a simple forwarding application and gradually increase 
the complexity of our DuT.

6.2.1  Impact of the Linux Kernel

In this section, we want to determine the effect of the Linux kernel on latency. 
We investigate three different Debian Linux kernels: the vanilla kernel without 
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any changes, the rt kernel provided via the Debian package repository, and a self-
compiled kernel with the enabled CONFIG_NO_HZ_FULL flag. All three images 
are built using the identical kernel version 5.10.0-10, to keep the differences 
between the images minimal.

DPDK-l2fwd
Figure 5 presents the forwarding latency of a DPDK Layer 2 forwarder (DPDK-

l2fwd) as a percentile distribution [50] at a packet rate of 10 kpkt/s. The plots for 
the higher packet rates are omitted due to their highly similar latency distribu-
tion. We did not observe lost packets, i.e., our system and the DPDK framework 
are powerful enough to handle the provided rates without overloading. Up to the 
99.9th percentile, all kernels offer a stable latency of approx. 3.3�s . For higher 
percentiles, the latency rises to 5.3�s/5.5�s for the vanilla/rt kernel. The latency 
of the no-hz kernel only rises to a value of 4.1�s beyond the 99.99th percentile.

Figure 6 shows the 5000 worst-case latency events over the 60-second meas-
urement time. All three measurements show a solid line at 3.3�s , i.e., most 
latency events are on or below this line. A regular pattern above this line is visible 
for the vanilla and rt kernels. We identified OS interrupts, in this case, the local 
timer interrupt (loc), as the root cause for this behavior in previous work [2]. In 
the no-hz kernel, the interrupt can be disabled; therefore, the pattern disappears.

The pattern is the result of two clocked processes—OS interrupts and packet 
generation. We measure an increased delay on the DuT if the packet processing 
task is delayed due to an interrupt being triggered simultaneously. The observed 
pattern is an aliasing effect caused by undersampling, i.e., we can see a low-fre-
quency signal that is not part of the original data. A more extensive description 
can be found in previous work [2].

In previous work [2, 3], we measured latencies for version 4.19 of the rt and 
vanilla kernels using the same scenario and hardware. There, we observed laten-
cies of up to 13.6�s . We attribute this reduction of more than 50 % to kernel opti-
mizations of the interrupt handling. When comparing the results of Fig. 6 to our 
previous investigation of the no-hz kernel [1], we noticed a significant improve-
ment. We successfully determined our interrupt monitoring tool as the source of 

Fig. 5  Percentile distribution of the latency for DPDK-l2fwd using rt, vanilla, and no-hz Linux kernels at 
10 kpkt/s
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a periodic 1-second latency increase. Without monitoring the interrupts during 
measurements, we could create a highly stable latency behavior.

Suricata-fwd
Suricata was chosen to measure the behavior of a real-world application. For 

this measurement scenario, we have disabled the ruleset in Suricata, turning the 
intrusion prevention system into a packet forwarding application. We use this 
measurement to determine the overhead of Suricata without the impact of rule 
application. Figure 7 shows the latency distribution of our measurement for the 
three investigated kernels.

For the rt kernel, we observe a higher latency than for the DPDK-l2fwd sce-
nario, with a median latency of 3.8�s . We notice a significant rise in latency 
beyond the 99.9th percentile to approx. 6.5�s across all measured packet rates. 
For the highest packet rate of 250  kpkt/s, we measure an additional latency 
increase to 12.2�s not present in lower rates.

For the vanilla and no-hz kernels, we observe an even higher rise in latency. To 
visualize the sharp tail-latency increase without concealing lower percentiles, we 
switched to a log scale for both kernels in Fig. 7. Up to roughly the 99.999th per-
centile, latencies are similar to the rt kernel. Beyond this point, the latencies of 
the no-hz and vanilla kernels rise up to 635�s , a significant difference compared 
to the rt kernel.

Figure 8 shows two selected examples that visualize the worst-case forwarding 
latencies over the experiment. The first example shows the forwarding latency 
of the rt kernel at a rate of 250  kpkt/s. There, two latency spikes above 10�s 

Fig. 6  5000 worst-case latency events for DPDK-l2fwd using rt, vanilla, and no-hz Linux kernels at 
10 kpkt/s
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are visible. The other plot shows the latency of the vanilla kernel at a rate of 
250 kpkt/s. There, a single spike is the reason for the latency increase.

Similar to our previous studies [2, 3], we assumed interrupts to be the root cause 
for the observed latency spikes. To verify our assumption, we used the Linux inter-
rupt counters listed in /proc/interrupts. This list contains a counter for the 
different kinds of interrupts triggered since the start of the system. When running 
our experiment with different measurement times, we saw the latency spikes when 
the TLB shootdown counter was incremented. We further investigated the differ-
ences between the low impact of the TLB shootdowns on the rt kernel and the more 
significant impact on the vanilla and no-hz kernels. We observed that TLB shoot-
downs happen more rarely on the rt kernel; we attribute this lower number to the 
changes introduced by the rt patches.

The TLB shootdowns are mentioned by Rigtorp  [8] as a potential source of 
latency and jitter. The transition lookaside buffer (TLB) is a cache that accelerates 

Fig. 7  Percentile distribution of the forwarding latency on Suricata (no ruleset)

Fig. 8  5000 worst-case latency events for Suricata (no ruleset) using different Linux kernels at 250 kpkt/s
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virtual memory address translation by caching previous translation results. Certain 
events, such as memory unmapping or changing memory access restrictions, require 
a flush of the TLB for all CPU cores. This flush is realized as an interrupt and causes 
the observed latency spikes. Rigtorp [8] mentions several cases where the usage of 
RAM is reorganized, causing TLB shootdowns. Releasing memory from an applica-
tion back to the kernel can cause TLB shootdowns and should, therefore, be avoided. 
He further recommends not using other techniques such as transparent hugepages, 
memory compaction, kernel samepage merging, page migration between different 
NUMA nodes, or file-backed writable memory mappings.

We attribute the occurrence of latency spikes to the memory management of Suri-
cata and did not find a configuration to avoid them for the no-hz and vanilla kernels. 
We did not observe severe latency spikes for the rt kernel. Figure 7 includes exam-
ples of measurements without latency spikes. We attribute this lack of increased 
latency to our 1-minute measurement time. In other measurements, spikes were 
observed for these rates.

Another finding of our investigation is the similar behavior of vanilla and no-hz 
kernels, contradicting our previous measurements with the DPDK-l2fwd. The differ-
ence between both scenarios is the architecture of the investigated packet process-
ing application. For the DPDK-l2fwd, we could dedicate a forwarding thread exclu-
sively to one core. Without any other thread running on the same cores, the no-hz 
kernel disables almost all interrupts for this core. Suricata follows a more complex 
multi-threaded architecture involving management and worker threads. In combina-
tion with DPDK, we did not find a configuration that would allow us to create a 
dedicated worker core that was not interrupted by other threads. Without exclusive 
core usage, the no-hz kernel does not disable any interrupts on the packet process-
ing core, acting the same way a vanilla kernel would—a behavior confirmed by our 
measurements. The rt kernel, in contrast, seems to handle the interrupt processing 
differently. For the rt kernel (cf. Fig. 7), we measured a higher jitter and a slightly 
increased latency. This behavior suggests that the rt kernel handles processing tasks 
during interrupts differently, thereby avoiding large spikes.

Suricata-Filter
Figure  9 shows the forwarding latency of Suricata applying its default ruleset. 

The increased complexity of the processing task raises latency. We measured a 
median latency close to 10�s for all kernels and packet rates between 10 kpkt/s and 
150 kpkt/s. For the no-hz and vanilla kernels, we noticed a steep increase in latency 
to approx. 600�s starting at the 99.99th percentile. The cause for this increase are 
the same interrupts as for the previous scenario. However, these costly interrupts 
occur at a higher rate, lowering the percentile for the latency increase. For the rt 
kernel, we did not observe this behavior, leading to a more stable and overall lower 
worst-case latency.

For all three kernels, we measured an overload scenario, causing packet loss and 
an increase in latency up to 2 ms. This measurement shows that Suricata becomes 
overloaded at the same forwarding rate of approx. 200 kpkt/s regardless of the used 
kernel.

Recommendation II: Avoid Overload Our measurements show that overload 
must be avoided on packet processing nodes to keep latency reasonably low. 
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Overload leads to packet loss and causes latencies in the ms-range. DPDK offers 
a low-overhead framework that can handle significant packet rates without over-
loading; complex applications such as the Suricata IPS can lead to overload sce-
narios if the processing capacity is exhausted. Therefore, a packet processing sys-
tem should be designed with enough spare capacity to handle the expected packet 
processing load.

Recommendation III: Choice of Kernel Our measurements have shown that the 
Linux kernel can have a significant impact on the latency of packet processing 
applications. However, there is no kernel that offers consistently better perfor-
mance across all investigated scenarios. The architecture of the packet processing 
application is a decisive factor for kernel selection. The no-hz kernel can dis-
able almost all interrupts if an application thread or process can be hosted on a 
single core without the need to share it with other threads. In such a scenario, 
the no-hz kernel offers the best latency. For more complex applications, sharing 
cores among threads, no-hz does not allow disabling interrupts offering no benefit 
over the vanilla Linux kernel. However, our measurements showed that an rt ker-
nel could optimize latency in such a scenario. The tail latency was lower, due to 
the lower impact of TLB shootdowns, causing high latency spikes for no-hz and 
vanilla kernels. Therefore, we recommend the rt kernel for complex applications 
like Suricata and the no-hz kernel for simple applications like the DPDK-l2fwd or 
Snort 3 [1]. We further noticed that the worst-case latencies improved when com-
paring a Linux kernel version 5.10 to version 4.19. Thus, we recommend check-
ing different kernel versions, when optimizing for latency.

Fig. 9  Percentile distribution of the forwarding latency on Suricata (with ruleset)
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6.2.2  Impact of the NIC

This section investigates the impact of the NIC on the forwarding latency. To meas-
ure the isolated effects of the NIC, we select the DPDK-l2fwd on the no-hz ker-
nel to minimize the impact of OS and application. We compare four different Intel 
NICs, the SoC-integrated X552 [47], the dual-port X520-DA2 [45], the quad-port 
X710-DA4  [46], and the E810-XXVDA4  [51]. The E810-based NIC supports 
25 Gbit/s Ethernet but was used with a 10 Gbit/s link to ensure comparability with 
the other NICs. The rest of the measurement setup remained unchanged.

Figure  10 visualizes the forwarding latency for the different NICs at differ-
ent packet rates as a percentile distribution. The oldest NIC in our comparison is 

Fig. 10  Percentile distribution of the latency for different Intel NICs. The 10-�s bar is highlighted with a 
dash-dotted line for easier comparison
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the X520, which offers a stable and highly similar latency across the investigated 
rates. A visible increase in latency starts around the 99.999th percentile; the latency 
increases from approx. 3.9�s to 4.5�s . The X552 NIC offers the same stability as 
the X520, and the latency distribution follows roughly the same shape. The absolute 
values are shifted by 0.5�s , i.e., the X552 is faster than the X520.

For the X710 NIC, we see a stable latency behavior for a packet rate of 10 kpkt/s 
that stays below 5�s . However, starting at a rate of 50 kpkt/s, we can see significant 
changes in the latency behavior where latency rises from a median of approx. 14�s 
to 37�s for the 99th percentile. A closer investigation of the egress traffic shows 
that the NIC begins sending bursts of packets. If we increase the rate, the latency 
sinks again to approx. 20�s for the 99.9999th percentile; however, the bursty behav-
ior remains. Thus, the latency is not as stable as it was for a rate of 10 kpkt/s. For 
the E810 NIC, we see stable latency behavior for rates of 10 kpkt/s and 50 kpkt/s. 
Higher rates are again subject to bursty behavior and latency increase.

We attribute the differences in stability to the increased complexity of the NICs 
and their controller architectures over time. An indicator for this increased feature 
set is the length of the respective data sheet that grew from approx. 1000 pages for 
the X520 [45] to over 2700 for the E810 [51]. Also, the size of the firmware present 
on the NICs grew over time. The X710 and the E810 possess firmware of several 
megabytes; the E810 additionally features a programmable parser that loads addi-
tional software during runtime. Where older NICs, such as the X520, possess a 
fixed processing path, newer NICs feature a higher degree of configurability for the 
packet processing path. This increased flexibility makes the packet processing path 
and latency on the NIC less predictable for newer NIC generations. We attribute the 
increased latency to the changes in NIC architecture.

For our tests, we relied on the default configurations provided by DPDK for PCIe 
and NIC drivers. Further optimizations were not considered. Please note that X710 
and E810-based network controllers were designed for 40  Gbit/s and 100  Gbit/s 
bandwidths. In our scenario, we only investigated 10 Gbit/s to ensure compatibility 
across the different NICs and our measurement platform. The latency behavior may 
be different when operating at higher link bandwidths.

Recommendation IV: Choice of NIC We have shown that the choice of NIC can 
significantly impact latency and jitter. Older, low-complexity NICs, such as the Intel 
X520 or X552, offer less configurability leading to low, stable latency. Therefore, 
the impact of the NIC is low compared to other effects described in this paper. How-
ever, the impact changes when considering more complex NICs, such as the X710 
and E810. Newer NIC generations offer a higher degree of flexibility, which in turn 
make predicting latency more challenging. Thus, we recommend carefully inves-
tigating the latency in application-specific scenarios, especially when using more 
recent NIC architectures.

6.2.3  Impact of Virtualization

We want to investigate the impact of virtualization on packet processing appli-
cations. Therefore, we measure the performance of a virtualized DPDK-l2fwd 
application. The application is run on a VM pinned to P-cores 1, 2, and 3 of our 
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DuT. The OSes on the DuT and the DuT VM use the same, previously described 
boot parameters and images. For the impact of virtualization, we only analyze the 
impact using the DPDK-l2fwd and the Intel X552 NIC. This simple setup allows 
measuring the impact of virtualization in isolation without potential effects 
caused by a complex software architecture. Further, the used CPUs could not run 
Suricata in a meaningful way. Our setup requires at least two separate p-cores for 
the operating systems—on the host and the VM. Suricata requires at least three 
cores to run with minimal core sharing among threads. For obvious reasons, this 
five-core requirement cannot be met on a quad-core CPU.

Figure 11 shows the effects of virtualization on packet processing applications. 
The measurement shows a stable latency of approx. 4�s up to the 99th percentile. 
Beyond this point, a significant increase begins, and the different Linux kernel 
versions begin to differ. As shown in previous measurements (cf. Fig. 5), the rt 
Linux kernel latencies are higher than the latencies of the no-hz and vanilla Linux 
kernel. We measure tail latencies for no-hz and vanilla kernel at approx. 11�s and 
10�s.

In previous work [1], we measured the latencies for version 4.19 of the no-hz 
Linux kernel using the same scenario and hardware. We observed a latency of up 
to 4.1�s with virtualization on a no-hz Linux kernel. This shows that the impact 
of virtualization is significantly higher on newer kernel and software measured in 
this experiment with an increase of approx. 6�s.

Figure 12 shows the worst-case latency behavior over the 60-second measure-
ment period for the virtualized DPDK-l2fwd example on each of the measured 
Linux kernel versions. Further analysis of the worst-case events shows a familiar 
behavior; a solid horizontal line with most latency events either on or below this 
line, above this line, a regular pattern of events. In general, we can see that virtu-
alization leads to an increased number of events in the area above the horizontal 
line. The number of events is increased because of the higher number of inter-
rupts, caused by two running operating systems, the VM OS and the host OS. In 
addition, the interrupt processing time on the virtualized kernel is increased com-
pared to non-virtualized setups. This leads to a visible impact of virtualization on 
the performance of low-latency packet processing systems.

Fig. 11  Percentile distribution of the latency for a virtualized DPDK-l2fwd at 10 kpkt/s
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Figure 12 shows almost identical behavior between the no-hz and the vanilla Linux 
Kernels. We assume the interrupts could not be disabled on the no-hz kernel in this 
environment. To verify our assumption that interrupts increase the latency, we per-
formed a second measurement run, where we captured the interrupt counters in Linux 
during this specific measurement run. We found a correlation between the local timer 
interrupts and the increased latency events.

Recommendation V: Choice of Virtualization We have shown that choosing between 
virtualized and non-virtualized systems for packet processing impacts latency and jit-
ter. At the same time, we have shown that its price, i.e., the impact of virtualization on 
latency, is limited to tail latencies. When using virtualization, the choice of Linux ker-
nel matters. The virtualized no-hz kernel did not offer benefits over a virtualized vanilla 
kernel; the tail latency on the virtualized rt kernel is even higher. All three kernels per-
formed worse from a tail-latency perspective than their non-virtualized counterparts. 
Due to the negligible impact on latency below the 99th percentile, latency considera-
tions should not prevent the virtualization of applications in general. However, if tail 
latencies are the primary optimization goal, a bare-metal system can offer benefits.

Fig. 12  5000 worst-case latency events for virtualized DPDK-l2fwd using rt, vanilla, and no-hz Linux 
kernels at 10 kpkt/s
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7  Limitations

The measurements presented in this paper have shown that software packet pro-
cessing systems can be tuned to provide sub-microsecond latency with low jit-
ter. However, the low latency and jitter come at a price. The presented system 
configurations disable the CPU energy-saving mechanisms. In addition, DPDK 
actively polls the NIC, fully loading the allocated CPU cores. We measured the 
energy consumption in a previous paper  [2]; the entire server consumed 31  W 
in an idle state and 47 W when executing a packet processing application. The 
majority of this 48-percent increase in energy consumption is caused by the CPU. 
While numbers are highly hardware specific, the increase and the CPU being its 
main factor can be transferred to other systems.

8  Experiment Data and Reproducibility

A major goal of our research is the creation of reproducible experiments  [49]. 
Therefore, we created a website [52] that explains each measurement presented in 
the paper. The experiment artifacts are available in a GitHub repository [53]. The 
experiment artifacts include the experiment scripts, measurement data, plotting 
scripts, and plots. The investigated applications are open source on GitHub  [5, 
28]

9  Conclusion

Our measurements show that the latency limbo has much in common with the 
actual dance. A set-up latency bar can be easily touched or exceeded with seem-
ingly minor alterations to the investigated software stack. Nevertheless, we show 
that, given the proper techniques, the latency bar remains intact. Therefore, we 
established our recommendations acting as guiding rails to create reliable, low-
latency packet processing systems:

– Software-based timestamping methods are subjected to the same effects we 
investigated in our studies. A measured latency may be caused by the measur-
ing or the measured system causing ambiguous measurement data. To avoid 
this problem entirely, we stress the need for hardware-based timestamping, to 
provide high accuracy and precision for measurements.

– Overloading a system leads to inevitable packet loss and filled buffers increas-
ing latency; therefore, overload must be avoided. Our measurements have 
shown that DPDK and Suricata provide a throughput of several 100 000 pack-
ets per second on a single CPU core. However, when inserting a complex 
computation like the IPS rule application into the processing path, the limited 
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CPU resources may cause an overload. Providing enough CPU resources or 
limiting the number of packets are possible solutions to this problem.

– Our investigation of the different flavors of the Linux kernel has no clear winner. 
If a network application process can be hosted on a CPU core exclusively, the 
no-hz kernel provides stable and low latencies. The rt kernel offers superior per-
formance if a core is shared between processes. However, we observed situations 
where the vanilla kernel performs best, if cores are shared, and TLB shootdowns 
did not occur. For the choice of kernel, there is no one-size-fits-all solution; it 
requires measurements or an in-depth investigation of the application architec-
ture to find the best fitting kernel.

– In our comparison, we determined the Intel X552 as the NIC with the lowest and 
most stable latency. More modern cards were not only slower but also introduced 
jitter. If the described NICs are not an option, we recommend testing the desig-
nated NIC architecture before integration to avoid surprising effects on latency 
and jitter.

– For virtualization, we measured a noticeable impact on tail latency. The median 
or lower-percentile latencies were only slightly increased, demonstrating that vir-
tualization is highly efficient and introduces little overhead to the packet process-
ing path. When optimizing tail latencies, virtualization should be avoided, as we 
noticed irregular spikes for all our measurements.
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