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Abstract—As networks become denser and more heterogeneous
different paths can be considered in order to reach each multi-
homed UE, offering optimal performance. 5G and beyond net-
works feature contributions related to the dynamic programming
of the network, from the operator side, in order to optimally
allocate resources in the network. In this work, we consider such
a case, where network access is provided to the end-users via
heterogeneous (3GPP and non-3GPP) Distributed Units (DUs),
converging to a single Central Unit (CU), and programmable on
the fly with external interfaces. We employ Machine Learning
(ML) methods in order to forecast the Quality of Service (QoS)
that a wireless client will get from the network in the near
future based on the Channel State Information (CSI) metric.
Subsequently, we appropriately steer the traffic over the different
heterogeneous DUs for ensuring that the network meets the
needs of the UEs. We design, develop, deploy and evaluate our
method in a real testbed environment, using emulated mobility.
Our results show that the overall throughput of each UE can be
drastically improved compared to existing allocation mechanisms.

Index Terms—5G, Artificial Intelligence, Disaggregated RAN,
HetNets, Neural Networks, Traffic Steering

I. INTRODUCTION
5G networks introduce a wide set of new functionalities that

add up to the flexibility for the network provider. Through
the adoption of a virtualized system architecture and the
execution of the network as cloud-native functions, assisted
via the control/user plane disaggregation, the operators can
have fine grained control over different parameters of the
network during its lifecycle. This creates fertile ground for
the further enhancement of the 5G network, through resource
allocation decisions that take place dynamically during the
network operation, meeting the needs of the user demand.

Such approaches are commonly supported with dedicated
and standardized APIs for programming and reconfiguring the
Radio Access Network (RAN), through applications hosted on
the edge of the network (xApps) [1]. Measurement collection
and network programming relies on the recent advancements
of the O-RAN architecture for beyond 5G networks, through
the definition of interfaces for the different layers of the stack
(e.g. the A1/E2 interfaces of the O-RAN architecture). xApps
monitor and analyze metrics collected from network functions
(base station or core network), and conclude on the resource
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allocation. In this way, the network is considered an elastic
resource, constantly adapting to meet the needs of its users.
Given the fact that applications are offered over heterogeneous
networks, network adaptation should span multiple technolo-
gies (e.g. traffic steering over multiple links [2]).

Such interfaces provide the capability to host applications
which take advantage of these metrics in real-time, thus cre-
ating fertile ground for the efficient forecasting of load, based
on historical data. ML can assist in the effective prediction
of metrics that reflect the load or QoS of a client, so as to
appropriately and proactively apply policies that improve the
overall network behaviour. In this work, we deal with the case
of sustaining the QoS that mobile clients are getting, when
using multiple heterogeneous links (3GPP and non-3GPP)
for network service. By extracting low-level MAC statistics
from the telecom network, we conclude through ML on the
mobility patterns of the users, and appropriately steer traffic to
them through multiple links. In this manner, QoS is preserved
regardless of the network conditions in different trajectories.
The main contributions of the paper are the following:
• To proactively determine the best strategy for serving users

through multiple links, in order to increase their QoS, with
a dedicated xApp running on top of the network.

• To effectively infer with ML the QoS that a mobile client
is getting, in different trajectories.

• To experimentally evaluate the contributions in a real envi-
ronment, using realistic datasets and emulated mobility.

We use the Channel Quality Indicator (CQI) as the predicted
metric that determines the per client QoS. CQI is a metric
reported from the UEs to base stations to assist in the resource
allocation on the MAC layer. We use the OpenAirInterface
[3] platform for the network, and the FlexRAN controller [4]
for collecting MAC level statistics for our xApp. As our ML
solution, we use a Bidirectional Long Short-Term Memory
(Bi-LSTM) stacked Recurrent Neural Network (RNN) model.

The rest of the paper is organized as follows. Section II
provides an overview of related literature. In Section III,
we detail the system architecture, ML model, and mobility
emulation framework. In Section IV we show our findings
and in Section V we conclude.

II. RELATED WORK

Augmenting the network with intelligence is a key charac-
teristic for beyond 5G solutions, as it enables the automated
provisioning and proactive resource allocation. For instance, in
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[5], authors explore the potential of Artificial Intelligence (AI)-
based approaches in the context of 5G mobile and wireless
communications, evaluating the different challenges and open
issues for future research. Authors in [6] group the different
approaches based on data sources, and the role of ML/AI in
making the networking systems intelligent through proactive
and prescriptive self-awareness and self-adaptation, with the
aim to maximize the overall QoS. In [7], the authors employ
a cloud-native approach for existing networks and create
a closed-control loop framework for AI-based network and
service management, with respect to performance KPIs. As
the wireless network is susceptible to performance fluctuations
due to client mobility, several works focus on optimizing the
channel allocation, using ML. For instance, authors in [8]
focus on an autoencoder for feature extraction from Channel
State Information (CSI), and use ML (logical regression) to
decide the modulation and coding schemes. In [9], resource
balancing is studied among primary/secondary users in a
cognitive radio environment.

Key variables in all the allocation problems are the moni-
tored parameters that reveal the true QoS that each user expe-
riences. Most of the works, focus on CSI information reported
by clients. In [10], authors employ ML for forming the CSI,
including parameters like UE context, signal-to-interference-
plus-noise ratio (SINR), and delay. In [11], CSI is estimated
using Neural Network based ML methods, predicting the per
client signal to noise ratio.

As networks become denser, multiple-paths for serving each
client might be available for the network operator, and can
be included in the allocation process. In [12], authors select
the path with the higher estimated throughput. In [13], a
data driven algorithm for traffic steering is proposed, using
as metrics the Reference Signal Received Quality (RSRQ)
from the network. In [14], authors propose an adaptive cell
selection scheme in ultra-dense heterogeneous environments,
showing that the QoS of moving vehicles is highly affected.
Based on these, it is evident that the technology selection for
traffic steering affects the overall performance experienced by
wireless clients. Nevertheless, none of these works assumes
convergence of heterogeneous technologies, but merely the
presence of an external intelligent controller that manages the
steering process.

In [15], we introduce such heterogeneity in the telecom
network, by integrating non-3GPP access technologies to the
LTE base station architecture. The solution is disaggregated,
relying on the functional splitting of the base station stack
using the 3GPP Option-2 split [16], and augments the network
with heterogeneous links used for serving multi-homed UEs.
As the communication between the CUs and DUs relies on
stateful protocols, data flows between the two technologies are
ensured to deliver traffic in an orderly manner. In this work, we
use the same architecture and determine the optional splitting
of the traffic among the heterogeneous links, subject to client
mobility. This is one of the first works, to the best of our
knowledge, to address the steering process from a common
convergence point, inside the 3GPP network.

Fig. 1: The 5G Disaggregated Architecture for real-time steer-
ing over heterogeneous technologies.

Our work is considering the downlink channel and is applied
from the perspective of the network operator at the base
station level. Towards determining the optional split of the
traffic, we retrieve MAC layer statistics for each UE, as
perceived from the base station side. We rely on the CQI
reported by each UE for the 3GPP network and by employing
ML methods, we conclude on the split of traffic among the
different technologies, for preserving the QoS of the connected
clients. In the next section, we detail our system architecture
and the choice of ML method that produces our predictions.

III. SYSTEM ARCHITECTURE
Towards developing an efficient real-time scheduling and

traffic steering mechanism for heterogeneous technologies in
the disaggregated heterogeneous RAN architecture, we lever-
age our prior work [15] based on the OpenAirInterface [3]
and FlexRAN [4] platforms. Figure 1 is the main reference
point depicting the functional architecture used to build our
framework. The heterogeneous access is enabled through non-
3GPP (WiFi) DUs that are integrated in the architecture,
communicating with the CU. At first, we develop a scheduling
technique on the CU side, relying on the FlexRAN internal
communication (Controller/Agent). We introduce intelligence
through a novel ML & AI unit responsible for the live
monitoring and forecasting of the channel quality based on the
reported CQI values from the UEs. Our target is the analysis
of CQI values from mobile stations (car routes obtained from
real commercial networks). Thus, we obtain and analyze such
data from the city of Volos in Greece, where the experimental
facilities are located. Specifically, we reproduce the real car
routes inside a complete realistic experimental infrastructure,
the NITOS testbed [17]. The NITOS Testbed includes wire-
less devices (Software Defined Radios, UE terminals) that
are utilized for an efficient validation and evaluation of our
framework. Below we list the key features that enable traffic
steering and scheduling over heterogeneous DUs, seamlessly
resulting in higher QoS to the end-user.
A. Management and deployment of the network functions

As a baseline topology, we utilize the 5G disaggregated
architecture built with the OpenAirInterface platform. Specif-
ically, the functional split occurs at the higher OSI stack
layer 2, between Packet Data Convergence Protocol (PDCP)
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and Radio Link Control (RLC) layers of the base station,
creating the CU and DU components, interconnected over an
Ethernet-based fronthaul [18], as shown in Figure 1. The CU
includes the PDCP and above layers, as well as the interface
towards the Core Network, while the DU consists of the
RLC and lower MAC and PHY layers. The communication
between CU and DU is based on the F1 Application Protocol
(F1AP) via the F1 interface. For the core network and the
base station, we employ the LTE implementations of the
OpenAirInterface platform due to its stability compared to
the 5G-NR version at the time of writing. Nevertheless, the
solution can be directly projected to the 5G implementation by
interchanging the core network components with the 5G ones
(HSS/UDM, MME/AMF, SPGW-U/UPF, SPGW-C/SMF) and
the disaggregated eNB with a disaggregated gNB. Moreover,
we use LTE and WiFi DUs to support a heterogeneous network
connection to a multi-homed commercial UE. Finally, we
utilize the FlexRAN platform to create the mechanism for
the real-time scheduling of the DUs based on its internal
slicing communication between the FlexRAN Controller and
the Agent; the latter is integrated into the LTE DU.

B. Traffic Steering Mechanism Implementation
To develop an effective steering scheme for multiple tech-

nologies, we consider the CU as the coordinator, that selects
the traffic load for every DU, leveraging the FlexRAN’s slicing
technique. Specifically, our goal is to extend slicing support,
based on the resource block allocation for the 3GPP network,
and steer traffic over different DUs, by a controller-defined
percentage. To accomplish this, we parse the slice values (UE
id and percentage) as it arrives at the DU, and develop new
messages to be forwarded to the CU over the F1 interface.

The scheduling mechanism is shown in Figure 2 and is op-
erating in a Round-Robin fashion. In particular, there are one
hundred slots available for every round, each one representing
1% and used to send one packet. Every DU exploits a number
of slots to transmit packets to UEs, based on the percentage
value. The LTE DU is assigned initially a number of slots
equal to the percentage value. Subsequently, the WiFi DU is
assigned the remaining slots (100 - percentage). For instance,
if the posted percentage in slice equals 60%, the LTE DU will
be allocated the first 60 slots, while the WiFi DU will transmit
the remaining 40 for every round. Thus, the scheduler instructs
the CU to forward 60% of the downlink traffic via the LTE
DU and the remaining 40% through the WiFi DU.

C. AI-Driven Architecture
Towards developing a real-time scheduling framework adap-

tive to the network fluctuations, ensuring the optimal network
performance and QoS, we build an ML & AI unit that is
able to infer on the future channel conditions. As depicted in
Figure 1, it is constructed on the FlexRAN controller side
for direct slicing management. Its role is to continuously
monitor the channel quality by collecting CQI values. In
LTE systems, CQI is reported from the UEs for assisting the
allocation of modulation and coding schemes. Especially, it
ranges from 0 to 15 in its value. This translates from no

to 64QAM modulation, from zero to 0.93 code rate, from
zero to 5.6 bits per symbol, from less than 1.25 to 20.31
SINR (dB) and from zero to 3840 Transport Block Size bits.
Subsequently, the ML unit identifies patterns in the CQI data
and forecasts near-future values continuously. Based on the
predicted CQI values, the unit makes appropriate scheduling
decisions based on a slicing allocation algorithm. Specifically,
it uses the aforementioned scheduling mechanism to configure
the DU scheduler to ensure enhanced end-user experience. For
example, when poor LTE quality is forecast, the scheduler
directs a higher traffic percentage via the WiFi DU, as long
as it has better link conditions.

Fig. 2: Round-robin Scheduling Technique for the DUs.
D. Data Management & Analysis

This work is focused on CQI data from car routes in real
networks. Below we analyze the steps followed from acquiring
the data to preparing them for the model. More specifically,
we describe the collected car route data and how we reproduce
them in the testbed. Moreover, we explain the creation of
traffic scenarios based our data, and their augmentation for
emulating multiple cars traversing a specific city pathway.
Finally, we present the methodology for collecting the CQI
values of the emulated car routes in the testbed, and the data
pre-processing for feeding them into the model.

1) Car Route Attenuation Data & Reproducibility: To
emulate a realistic car route inside the testbed, we install pro-
grammable attenuators at the outputs of the Software-Defined
Radio (SDR) devices. By modifying the antenna attenuation,
we emulate mobility to any connected user. Specifically, we
employ attenuation scenarios where the SDR attenuation is
configured in reflecting actual car routes. We deploy several
attenuation scenarios to reproduce many different cars travers-
ing a specific pathway, parsing and collecting the CQI values.
Noticeably, CQI is inversely proportional to attenuation; high
attenuation values result in low CQI and vice versa.

2) Basic Attenuation Scenario: Towards simulating the
monitoring of a specific city road that many cars traverse,
we build on top of a basic attenuation scenario from real
car routes. Understandably, all the cars should have a similar
CQI/attenuation patterns as they travel through the same
specific geographical area. Nevertheless, slight variations from
car to car are foreseen, based on the driving style, the noise,
and the actual UE chipset that is employed. Thus, the available
scenario aims to provide the basic pattern of the cars traveling
through this city pathway.

3) Attenuation Data Augmentation: We apply data aug-
mentation techniques to create multiple attenuation scenarios
representing all the cars of the pathway. Specifically, we utilize
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Fig. 3: Attenuation scenarios and collected CQI series.

Fig. 4: Pre-processing Example with m = 2, L = 3, p = 2.

the Tsaug python [19] library to apply various augmenters.
First, we use Dynamic Time Warping (DTW) to emulate cars
with different speeds. We create cars that randomly change
their speed multiple times during the driving (approx. every
1 km). Each augmented car reaches several points of the
pathway with time differences ranging from 0 to 30 seconds
from the basic car. Given these, and since the basic car is
traversing with 50 km/h (velocity limit), the augmented car
scenarios use speeds in the range of 40 to 60 km/h. Moreover,
Additive White Gaussian Noise (AWGN) with small variance
is added to represent the various road conditions and chipset
of the cars. Further, some scenarios are slightly cropped and
scaled for more efficient training. This way, we obtain slightly
altered scenarios based on the basic one, representing the
different parameters of every car, as shown in Figure 3.

4) CQI Data Collection: With multiple car attenuation
scenarios, we proceed to the CQI collection. We randomly
choose one scenario and deploy it in our experimental topol-
ogy. Meanwhile, we continuously parse the CQI values with
the ML & AI unit, by periodically sending requests to the
FlexRAN controller, inquiring about the base station statistics
per 250 msecs. Importantly, this is also the prediction period,
since the unit infers each time a new CQI value is obtained.

In total, we deployed 73 car-route scenarios, each providing
about 2500 CQI values. Thus, we collect 73 univariate time
series sequences with around 182.500 CQI values. Figure 3
shows three of them, showing slight changes from car to car.

5) Pre-processing: Before feeding the data into our model,
it is essential to pre-process them. Initially, as shown in Figure
4, we normalize them by rescaling them in the range [0, 1]
to boost model training efficiency. Subsequently, we utilize
a filtering technique to reduce the volume of the data by
collecting the means of data batches (mean of every m values).
In particular, we calculate and store the mean of every 5 CQI
values. In this way, we end up with a sequence that is five
times smaller but contains the same information. Following
this, we implement a sliding window approach to convert
the time-series forecasting problem into a supervised learning
one by cropping the huge filtered sequence into multiple sub-
sequences (Xi) by sliding continuously by one CQI. At this
point, it is essential to choose the input (Xi) and output (yi)
shape of the model based on how the AI unit function. We
concluded that the model will predict the average value of
multiple (p) future CQIs and not only the next CQI value in
the future. In this way, the model’s predictive performance is
resilient to fluctuations and outliers, and provides the general
figure of the CQI values in the near-future. Taking this into
account, we pre-process the output data (yi labels) as single
values that depict the average CQI for the future 17.5 seconds;
that is 14 filtered values that are placed after every Xi sub-
sequences. The CQI labels (yi) of a car scenario after the pre-
processing are illustrated in Figure 5. Regarding the shape of
the Xi sub-sequences (L), we understand that it is vital to
create input windows large enough to identify the pattern in
the data, but also sufficiently small in order to bolster training
time and avoid exploding/vanishing gradients; a common issue
in RNN models. Thus, after extensive experimentation with
various shapes, we conclude that the optimal window is to
utilize 80 filtered CQI values (100 seconds) for every Xi sub-
sequence. In this way, the model forecasts per 250 msecs the
mean CQI for the future 17.5 secs, by analyzing the pattern
in the CQI data of the past 100 secs. The data specifications
are provided in detail in Table I. Figure 4 shows an example
of the pre-processing procedure using m = 2, L = 3, p = 2.
E. Machine Learning Model

We examined our options for a deep learning model care-
fully, and we opted to employ a Bi-LSTM RNN utilizing
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Fig. 5: Car Scenario’s CQI Labels (yi) after pre-processing.

the Tensorflow-Keras API for the real-time CQI predictions.
For our decision, we considered the robust nature of LSTM
NNs to cope with Time Series Forecasting (TSF) problems by
employing sophisticated memory components (forget, input,
output gates, cell state). In this way, they often outcompete
conventional RNNs by identifying the pattern in data more
accurately and usually avoiding the exploding/vanishing gra-
dients issue. Moreover, adding bidirectional layers is linked
with higher predictive performance, as it provides an additional
reversed sequence learning. In fact, the key point is to combine
both the reversed and original sequences, to get insight about
the past as well as the future concurrently. This technique
is enhancing LSTM RNNs, leading to a more powerful and
adaptive model. After extensive hyperparameter tuning, we
employ a stacked model of two Bi-LSTM layers, both utilizing
25 neurons and a ReLU activation function. Importantly,
we recommend using at least two hidden layers to identify
non linear CQI patterns. Finally, we add a Dense layer with
an output unit, and use the Adam optimizer and the Mean
Squared Error monitoring function (Table I).
F. Steering Algorithm

The steering scheme is responsible for obtaining the predic-
tions of the AI unit, and appropriately steering the downlink
traffic via the DUs so as to ensure high end-user QoS. Since we
focus on the 3GPP part of the solution, we perform all of our
experiments with excellent link quality for the WiFi DU. The
steering algorithm dynamically adjusts the downlink path in
real-time, ensuring optimal network performance. Specifically,
the steering mechanism selects the DU based on a CQI
threshold (CQI = 9). This means that while the average CQI of
the future 17.5 secs is expected to be higher than 9 (16-QAM,
8.75 SINR), the scheme steers all the traffic via the LTE DU,
as the link quality suffices. On the other side, when the mean
CQI is about to drop below 9 in the near future, the scheme
steers the traffic via the WiFi DU.

IV. EVALUATION

To validate and evaluate our implementation under realistic
settings, we utilize the NITOS experimental testbed [17]. In
specific, we begin by assessing the deep learning model’s
predictive accuracy and training requirements. As evaluation
metric, we utilize the Mean Absolute Error (MAE). Noticeably,
MAE depends on the data scale, and in our case the CQI scale
(0, 15]. This helps us understand easily the error performance
of the model. Subsequently, we test the complete ML & AI
unit in the testbed, evaluating its contribution in enhancing the
overall network performance and user QoS by continuously
forecasting the CQI and reconfiguring the DU steering. Impor-
tantly, the basic non-augmented car scenario is employed for

TABLE I: Data & Model Specifications

Data-specific Information
Collection/Prediction Round Every 0.25 secs

Filtering Window (m) 5 non-filtered values
Scenario Duration 11 mins

Number of Scenarios (cars) 73
Input Xi Time-slots (L) 80 (filtered values)

Output yi Time-slots 1 (mean of 14 filtered future values)
Training Input X Shape (samples, L, 1) = (36269, 80, 1)
Training Labels y Shape (samples, 1) = (36269, 1)

Hyper-parameter Configuration
Layers 2 Stacked Bi-LSTM + Dense

Input Shape (80, 1)
Bi-LSTM Neurons 25 for both Bi-LSTM layers

Dense Units 1
Activation Function ReLU for both Bi-LSTM layers

Optimizer Adam
Compile loss Mean Squared Error

Epochs 55
Batch Size 26

Evaluation Values
Time-series CV MAE: 0.16

Experiment MAE: 0.157
Training Time 1 hour with TPU on Google Colab

the evaluation experiments and was excluded from the training
data. The number of different scenarios and data used for
predicting the network performance is large enough to justify
the model’s generalization for several other scenarios than the
ones that we evaluate in this work.
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Fig. 6: CQI Forecasting in Testbed (original CQI scale).

Initially, we employ a 2-step evaluation process for the
model. First, we utilize a time-series cross-validation (CV)
scheme that is based on K-fold CV, but is not violating the time
sequence. Specifically, the training data (36269 pre-processed
Xi samples collected from the augmented attenuation sce-
narios) are split into multiple folds of a predefined length
(≈ 500 samples). We form two sets, a training and a validation
one. First, the training set is initialized with CQI data from
approx. 50 cars (about 25000 samples). On every iteration,
we add the next fold to the training set and use its following
one as validation fold. Each time we fit the model to the
training set and evaluate its generalization on the validation set
(unseen data). At the end, we obtain the mean validation error
from all validation sets (approx. 23 cars) to find the overall
generalization error. The model generalizes remarkably well,
identifying accurately the pattern in the unseen data and by
having a MAE of 0.16. This error is negligible as the CQI
range is (0, 15].

Subsequently, as a second step, we train the model in
the complete training set (all samples from the augmented
scenarios) and integrate it to the AI unit to evaluate the entire
efficiency of the framework on the testbed using the basic non-
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Fig. 7: Default Steering
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Fig. 8: AI-driven Steering
augmented attenuation scenario. Specifically, we design and
execute two experiments. The first one, tests the QoS of the
user and the network performance without utilizing the AI unit
and label it as ”default” network configuration since it is not
aware of the link performance and thus it utilizes primarily the
LTE link. On the other side, the second experiment’s traffic
is steered by the AI unit based on the LTE link condition
(CQI predictions). The goal of the unit is to prioritize the
LTE link under good link conditions (CQI ≥ 9), and to
redirect 100% of the traffic via the WiFi link when the LTE
link conditions are deteriorating (poor CQI predictions, < 9)
to prevent on time the QoS worsening. Figure 6 presents the
CQI forecasting during the experiments showing outstanding
performance with MAE of 0.157. The end-user experience is
depicted in the Figures 7 and 8 and it is clear that the AI
unit enhances substantially the QoS of the UE. In particular,
it is evident that it predicts on time the deterioration of the
LTE link at approx. 160 seconds in Figures 8a and 8b and thus,
redirects the downlink traffic through the WiFi DU, which has
excellent link quality, preventing the QoS plunge. Additionally,
at approx. 550 seconds, the AI unit predicted on time that the
LTE link quality will be enhanced and hence, steered the traffic
back to the LTE DU.

V. CONCLUSION

In this work, we designed, developed, and evaluated a ML-
driven approach for determining the optimal splitting and
steering of traffic in a heterogeneous disaggregated ultra-
dense network environment. A Bi-LSTM stacked model was
employed for forecasting the CQI metric reported from the
wireless clients of the network. Subsequently, a strategy for
steering the traffic over the heterogeneous DUs was employed,
for ensuring that QoS for the end-users is maximized. In
the case that there is external interference on either wireless
technologies, our algorithm appropriately steers the traffic per-
centage between them in order to ensure the highest achievable
throughput. The tools and data contributions of this paper
are also available online in [20]. In the future, we foresee
extending our work towards determining a sophisticated ap-
proach for the dynamic traffic-steering policy among multiple

DUs and extending the allocation technique towards including
other decisions for the network (e.g. allocations in the transport
network between DUs and CU, CU and 5G Core Network).
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