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Abstract—Beyond 5G and future next-generation networks will
have to cope with the ever-growing traffic demand for mobile
traffic, as well as low-latency communications. Network densifi-
cation has been long proposed as a solution for augmenting the
available wireless links with more technologies, thus enhancing
the available capacity for the end-users. Nevertheless, selecting
the optimal split of traffic among the available links is not a
trivial decision. Machine Learning (ML) approaches can assist
in these decisions, by forecasting metrics collected directly from
the RAN, towards predicting the near-future performance, and
appropriately selecting the split of traffic. In this work, we
evaluate a total of 22 different ML models in such a traffic
steering use case, towards determining the solution that yields the
best results in terms of accuracy of predictions, training time, and
computational resources. We use a real-world testbed prototype
based on OpenAirInterface to evaluate our contributions, and
use realistic mobility datasets for emulating client mobility.
Our results show that the different algorithms can present
variations in terms of the achievable throughput, but several
can substantially improve the offered wireless network capacity.

I. INTRODUCTION

The 5th generation of telecommunication networks (5G)
have introduced several novel functionalities that add up to the
optimized management and control of the deployed network.
Beyond 5G networks are expected to add-up to the flexibility
of management, by using standardized interfaces that allow
the fine-grained control of the different functions at different
layers. Through the definition of the Open RAN (O-RAN) [1]
interfaces and messaging exchange schemes, the operator can
use applications (usually mentioned as xApps) that analyze
metrics and statistics collected directly from the RAN, and
conclude on the optimal allocation of resources. Application
of ML for Artificial Intelligence (AI) driven control of the net-
work is key for the future network management. By accurately
forecasting the monitored values upon which the decisions
for the allocation is made, the operator can proactively apply
decisions for the resource allocation, towards providing better
services, meeting the demand, or ensuring that the overall
network is energy efficient. The integration of such forecasting
methods to the telecommunications network is also reflected
in the definition of the 5G Network Data Analytics Function
(NWDAF) [2]. Although NWDAF is mainly targeting at
analyzing data at the 5G Core Network (CN) side, it is evident
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that the RAN can also benefit from such approaches in the
context of beyond 5G and 6G networks.

Towards pushing the network capacity to meet new perfor-
mance requirements in terms of bandwidth and latency, hetero-
geneous ultra-dense networks (UDN) have been proposed [3].
By deploying multiple RANs on non-overlapping spectrum,
the operator can augment the network capacity, and select the
different paths that can serve each client. Such functionality
can be also integrated within the telecommunications network,
by converging all the different networks at the Packet Data
Convergence Protocol (PDCP) layer [4]. This, in turn, enables
the operator to control the steering process in a per-packet
basis, while traffic from heterogeneous technologies has a
single entry/exit point (i.e. through the UPF).

In this work we blend the two concepts of traffic steering
and ML-driven network optimization towards determining
which forecasting algorithm is performing best in such a dense
scenario. We use a real telecommunications network, with
such programmable functionalities, acting as the convergence
point at the base station level for multiple heterogeneous
technologies. The prototype is based on OpenAirInterface,
and the work presented in [5]. On top, we built a scheme
for the collection of RAN related metrics, from the 3GPP
network, and accordingly we feed different ML algorithms
with the aim to determine which one performs better in such
an environment. We use different traffic scenarios reflecting
real car routes with fluctuating performance for the 3GPP
network, and select the percentage of traffic split between
different technologies. The main goals of this work are:

• To effectively forecast and infer through ML the estimated
QoS of a mobile client, under different mobility patterns.

• To determine the traffic split in UDNs, among the available
technologies and the per user estimated performance.

• To conclude on the optimal ML scheme that yields the
highest accuracy/precision in measurements for our setup.

• To experimentally evaluate the contributions in a real envi-
ronment, using realistic datasets and emulated mobility.

II. RELATED WORK

ML integration for managing programmable network func-
tions has received strong attention from the research com-
munity, as through the definition of programmable interfaces
even on the RAN [6], intelligent provisioning of resources
is possible. This is expected to play a key role for future
beyond 5G and 6G communications, as network programming
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decisions can be taken on the fly based on the demand, while
meeting the overall user satisfaction and energy efficiency [7].

Relevant literature on traffic steering mainly employ the
Quality of Service (QoS) and Quality of Experience (QoE)
metrics for determining the optimal split of traffic in UDNs.
Authors in [8] present the design approach for a unified
traffic steering framework, aiming at the orchestration of traffic
steering features for optimal radio resource utilization. In
[9], authors employ multi-tier cellular networks that combat
performance issues induced by client mobility. A data-driven
self-tuning algorithm for traffic steering is proposed to improve
the overall QoE in multi-carrier 4G networks. In [10], authors
use a QoE-driven traffic sharing algorithm based on mobility
load balancing, that equalizes the QoE provided by all network
cells. For this purpose, the handover margins between adjacent
cells are tuned on a per-adjacency or per-service basis based on
QoE measurements collected from the network management
system. Authors in [11] develop a multiservice-type based
transmission traffic scheduling optimization strategy, in or-
der to integrate non-3GPP networks in the steering concept.
Through their contributions, user satisfaction and effective
capacity are always better than when using the always-best-
connected and fixed-ratio power-allocation. Similarly, authors
in [12] consider a similar topology, but approach the problem
by considering two different classes of users in the system:
single-homed users and multi-homed users. By applying pro-
portional fairness to the network as a whole or to each isolated
wireless access network, they improve the achievable through-
put and stability conditions by applying a load balancing
between accesses, thus increasing the overall network capacity.

Beyond integrating ML into the network, it is crucial to
determine which algorithm better fits the under-study data.
Therefore, several works focus on comparing different ML
approaches. For example, in [13], authors integrate time-
series based predictive analytics with the 5G Core and show
a comparative study between two Time Series Forecasting
Models-AutoRegressive Integrated Moving Average (ARIMA)
and Facebook Prophet. In [14], authors compare supervised
learning and time series analysis to predict the monthly rush-
hour data traffic per cell in a live LTE network. They compare
methods including Random Forest, different Neural Networks,
Support Vector Regression, Seasonal ARIMA and Additive
Holt–Winters. Their results show that supervised learning
models outperform time series approaches. Finally, in [15],
authors employ ML in a cognitive radio network. The authors
investigate various time-series modeling approaches and Re-
current Neural Networks for predicting spectrum occupancy
and conclude that the latter can provide higher accuracy.

In this work, we start from a traffic steering problem, with
the management taking place at the RAN level, by integrating
all the different accesses in a single converged base station
unit. Based on the statistics received from the cellular network,
we conduct an experimental campaign to determine which ML
approach performs better, from a total of 22 different models.
Using this approach, we determine which algorithms perform
better, and subsequently, apply them to the traffic steering case.

Fig. 1: 5G Disaggregated Topology providing heterogeneous
UE connection based on OpenAirInterface and FlexRAN.

III. SYSTEM ARCHITECTURE AND METHODOLOGY

This work evaluates experimentally several supervised ML
and deep learning (DL) models when utilized for real-time
time-series forecasting (TSF) of the User Equipment (UE)
statistics in 5G networks. We work on univariate time-series
of Channel Quality Indicator (CQI) values obtained from real
car routes. Initially, in Section III-A we describe the network
architecture, based on our previous work [5]. Section III-B
demonstrates the Distributed Unit (DU) steering scheme, while
Section III-C analyzes the process of emulating UE mobility
and synthesizing traffic scenarios in the experimental environ-
ment. Section III-D provides details on data management and
Section III-E presents the utilized ML models.

A. 5G Disaggregated Architecture

Fig. 1 depicts the disaggregated network architecture that
supports heterogeneous wireless connection to a multi-homed
UE. It is based on the 3GPP Option-2 split of the Radio
Access Network (RAN) disaggregating the latter into one
Central Unit (CU) and multiple Distributed Units (DUs). 3GPP
(LTE) and Non-3GPP (WIFI) DUs are exploited to enforce the
heterogeneous UE connection, being guided by the CU. The
functional split between the CU and the DUs in the OSI stack
takes place at the higher OSI layer 2, among PDCP and Radio
Link Control (RLC) layers of the RAN. The CU is equipped
with the PDCP and above layers and with the S1 interface
to the core, while the DUs include the RLC, lower MAC and
PHY layers. The CU and DUs are connected over an ethernet-
based fronthaul exchanging traffic through the F1 interface
employing the F1 Application Protocol (F1AP). As core and
RAN, we use the LTE versions of the OpenAirInterface
(OAI) as they were more stable at the experimentation time.
However, the proposed implementation can be projected to the
5G NR version by replacing the LTE core components with the
5G ones and the disaggregated eNB with its gNB counterpart.
We rely on the FlexRAN slicing communication between the
Controller and the Agent to develop a dynamic DU steering
mechanism that optimally steers the downlink traffic via the
DUs. Therefore, we construct a smart controller by inserting
an AI unit at the side of the FlexRAN Controller.

B. DU Steering Mechanism

The slices guide the CU towards appropriately steering the
downlink traffic via the DUs in a per-packet basis. In order
to apply the FlexRAN slicing mechanism in the disaggregated
network, we forward the slice information to the CU and the
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Fig. 2: Round-robin DU scheduler based on slices.

CU schedules the traffic to different DUs with weights (Fig.
2). Specifically, rounds (Ri) of 100 slots are created. In every
round, each slot is utilized by one DU to send one packet. At
first, the LTE DU assigns its slots based on the Percentage
value. The remaining slots are used by the WIFI DU. In Fig.
2 the steering begins having a slice with a Percentage equal
to 80%. Thus, the LTE DU allocates 80 slots, while the WIFI
DU uses only 20 in R1-R4. Then, the second slice comes with
a 20% reversing the number of DU slots. Overall, in R1-R4

the 80% of the traffic is steered via the LTE DU and the 20%
via the WIFI DU, while in R5-R8 the figure is reversed.

Intelligence is inserted with an AI unit at the Controller’s
side. This unit predicts the LTE link quality and optimally
steers the traffic to ensure the best end-user QoE. Noticeably,
predictions for the WIFI one are not added yet since this work
aims at finding the best ML models for the LTE link’s quality
forecasting. Thus, the WIFI link maintains high quality in
the experiments in order to be used when the LTE quality
decreases. This way, we will validate that the AI unit prevents
the deterioration of the QoE by switching on time to the
WIFI DU. For the LTE link, the unit analyzes the CQI; a
metric posted by the UEs to the base station (BS). It is linked
with the allocation of the UE modulation and coding schemes
and ranges from 0 to 15. This is from BPSK to 64 QAM
modulation, from zero to 0.93 code rate, from zero to 5.6
bits per symbol, from less than 1.25 to 20.31 SINR (dB) and
from zero to 3840 Transport Block Size bits. Based on CQI
forecasting, a CQI threshold is set at 9 (16-QAM, 8.75 SINR).
When the CQI is expected to be more than 9, traffic is steered
via the 3GPP and otherwise via the WIFI DU.

C. Emulating UE Mobility & Traffic Scenarios

This work analyzes CQI data obtained from cars driving
through a specific route in the city of Volos, Greece. Our goal
is to reproduce this traffic inside our experimental environment
so as to evaluate the efficiency of the AI unit in realistic
settings. To emulate UE mobility in the testbed, we install pro-
grammable attenuators on the outputs of the Software Defined
Radio (SDR). Then, we configure the radio attenuation based
on the patterns observed in real cars. Note that increasing the
attenuation, decreases the UE’s CQI and vice versa. At first,
we possess only one basic traffic scenario, which contains
radio attenuation values from one car that drove through the
city route (Fig. 3a). Every other car that drives through this
route is expected to have a similar attenuation pattern since
it passes through the same geographical area. Only small
variations from car to car are expected, depicting the different
velocities, driving styles, road/weather conditions and noise.
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Fig. 3: Mobility Emulation using Attenuation Scenarios

Fig. 4: Supervised Learning Time-series Pre-processing.

Keeping that in mind, we synthesize a lot of car scenarios
employing data augmentation techniques using the Python
Tsaug library [16]. First, Dynamic Time Warping (DTW) is
applied to synthesize scenarios with different car velocities
and driving styles. More specifically, the augmented cars
randomly change their speed many times during the route
(around every 1 km). Moreover, they reach the same places
during the route with a time difference that varies from 0 to 30
seconds from the basic car used for the augmentation. Thus,
the augmented car scenarios have velocities that vary from 40
km/h to 60 km/h approximately, since the basic car scenario
has 50 km/h speed (road’s limit). Also, Additive White
Gaussian Noise (AWGN) with small variance is randomly
added in every scenario representing the effects of different
road/weather conditions. Further, many scenarios are cropped
and scaled for effective training. Additional but minor noise
will be added when we will collect the CQI data in the testbed.
This process ensures that a large spectrum of the route’s real
traffic is captured. Hence, we build efficient AI models, able
to generalize avoiding over-fitting and being immune to noise
and possible fluctuations.

D. CQI Data Collection & Management

To collect the CQI data, we randomly select one attenuation
scenario and execute it in the testbed. Concurrently, the AI
unit parses and stores the CQI values utilizing the FlexRAN’s
REST API. Each CQI is obtained every 0.25 seconds. Con-
sequently, the AI models forecast per 0.25 seconds. Overall,
CQI values from 73 cars are collected. Each car has about 2500
CQI values and hence, the total number of collected values is
182500. Fig. 3 shows the basic attenuation scenario (3a), and
also a CQI series collected from an attenuation scenario (3b).

Fig. 4 presents the data pre-prosessing. First, the values are
rescaled into the range of [0, 1] for efficient training. Then, a
filtering algorithm reduces the dataset’s size, keeping through
the patterns. In specific, we keep the mean of every m indices
creating a new series that is m times smaller. After that,
the sliding window method is applied forming a supervised
learning structure. We crop the filtered series into smaller sub-
series (Xi) of fixed length, L. Each Xi is the model’s input
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and is shifted by one index to the future from the previous
one (Xi−1). Further, each Xi has a yi pair, which is the label
(single value). Noticeably, each yi could represent either only
one CQI value or the mean of multiple (p) values. We prefer
the latter option as it gives a clearer picture of the near future
and is not affected by fluctuations. The values gathered for
each yi are located after the respective Xi in the dataset.
This way, they represent the future of each Xi. The models’
optimal m, L and p values are calculated after extensive
experimentation. Generally, we need an input window (m, L)
that is large enough to capture the patterns and small enough
to boost training. After experimenting, we concluded that an
efficient window size for this problem is 400 CQI values
(before pre-processing). That is about 100 seconds in the near-
past. Thus, for the majority of the models, we configure m and
L equal to 4 and 100 respectively (except Bi-LSTM that was
better with m = 5 and L = 80). Moreover, p should be large
enough to smoothen possible fluctuations and small enough to
present an accurate perspective of the near future. We found
that a value of 15 for p (after pre-processing) is efficient for the
models; that is approx. 15 seconds of the near-future. Overall,
each model observes the CQI data of the last 100 seconds,
identifies the patterns and forecasts the average CQI for the
next 15 seconds.

E. Algorithms

A plethora of AI methods is evaluated so as to find the best
ones in terms of accuracy and convergence speed. First, Linear
Regression is used, testing also regularization methods, such as
L1, L2 and Elastic Net. Then, Polynomial, ARIMA, Support
Vector (SVR), k-Nearest Neighbors (kNN) and Decision Tree
Regression methods are used. For ARIMA, we did not use
the last step of the pre-processing (sliding window) as it
is not designed for supervised learning. Moreover, ensemble
techniques are used, namely Bootstrap Aggregation (Bagging)
and Gradient Boosting. For the former, Random Forest and the
scikit-learn (sklearn) implementation of the Bagging method
are used. Regarding the latter, we employ the XGBoost, Light-
GBM, sklearn GBM, CatBoost and AdaBoost Regression.
Further, deep learning models are studied starting with a
Feed-forward Neural Network (FNN). Then, we work with
Recurrent Neural Networks (RNNs), including Long Short-
Term Memory (LSTM) and Gated Recurrent Unit (GRU).
We also test Bidirectional LSTMs (Bi-LSTM), Convolutional
Neural Networks (CNN) and a hybrid CNN-LSTM model.

IV. EVALUATION

Towards evaluating the AI unit, we assess the AI model
performance in IV-A, while in IV-B we experimentally validate
the unit’s ability to optimize the QoE in the testbed.

A. Models Evaluation

Time-Series Cross Validation, a method similar to K-fold,
is used to evaluate the model’s error. The pre-processed data
(45339 Xi, yi samples) are split into several folds of equal
size (500 samples). There are two sets; the training and the
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Fig. 5: Machine learning models’ evaluation and comparison.

test set. Initially, we insert several serial folds (30000 samples
- data of approx. 50 cars) to the training set following the
timeline. At each iteration (i), the model is trained on the
training set and is evaluated on the validation set (next fold
on the timeline) calculating the generalization error on unseen
data. In the next i, the training set is extended by one fold
and the next one is used for a new validation. In the end, we
calculate the mean of all validations folds (data from approx.
23 cars) as the final generalization error. As evaluation metric,
we use the Mean Absolute Error (MAE) that calculates the sum
of absolute errors between the forecasting (ŷi) and the labels
(yi) divided by the sample size (n):

MAE =

∑n
i=1 |ŷi − yi|

n

Noticeably, MAE is scale-dependent and for the evaluation, we
use ŷi, yi in the original CQI scale, (0, 15]. Thus, the error
is easily understood. For instance, a MAE of 2 is poor as the
forecasting deviates by a mean of 2 CQI values. The ultimate
goal is to find the models with the lowest MAE and training
time. The former is necessary for accurate predictions, while
the latter is essential for online-training implementations.
There, the models are continuously updated with new data to
capture new traffic patterns. To find the best models’ hyper-
parameters, the determining question is ”What is the right
trade-off between training time and MAE?”. Generally, more
training time means better MAE. However, we should find
the right balance for efficient resource management. Fig. 5
presents the model evaluation. All models are trained using
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a non-subscription Tensor Processing Unit (TPU) in Google
Colab Notebooks. Fig. 5a and 5b compare the ensemble
methods when using a different number of estimators based
on their achieved MAE and training time respectively. Fig. 5c
shows the NNs’ convergence speed. Then, after concluding
on the models’ structure (Tables I, II), Fig. 5e compares all
methods based on MAE. The best ones (MAE below 0.5) are
compared in Fig. 5d for their training time.

TABLE I: Neural Networks Configuration
Layers Input Hidden Layers Epochs

GRU 2 GRU + Dense (1, 100) 25 units per layer 51
LSTM 2 LSTM + Dense (1, 100) 25 units per layer 19

Bi-LSTM 2 Bi-LSTM + Dense (1, 80) 25 units per layer 52
FNN 2 Dense + output Dense (1, 100) 25 units per layer 381
CNN Conv1D +

MaxPooling1D + Flatten
+ Dense + Dense (output)

(10, 10) filters=64, kernel size=2,
pool size=2, 50 Dense

units

64

CNN-
LSTM

Conv1D +
MaxPooling1D + Flatten

+ RepeatVector + 2
LSTM + Dense (output)

(10, 10) filters=64, kernel size=3,
pool size=2, repetition

factor=1,
25 units per LSTM layer

129

TABLE II: Configuration of Ensemble Methods.
LightGBM XGBoost GBM skl. CatBoost Bag skl. R. Forest

Estimators 103 104 103 104 102 102

Fig. 5a and 5b show that when the ensemble methods use
more estimators, the MAE decreases but the training time
increases. Noticeably, bagging techniques (Bag. sklearn, R.
Forest) converge with fewer estimators than the boosting ones
(Fig. 5a), but generally need more training time to handle the
same estimators (Fig. 5b). This time increases dramatically
with 103 and more estimators. Regarding boosting, LightGBM
and CatBoost outperform XGBoost and GBM sklearn having
lower MAE and training time in all estimators. Furthermore,
CNN, FNN and CNN-LSTM (Fig. 5c) converge very fast in
low MAE in contrast to GRU, LSTM and Bi-LSTM. Based
on this, we conclude on the final structure of the NNs and
ensemble methods in Tables I, II. Notably, NNs use ReLU
activations and the Adam optimizer.

The results in Fig. 5e show that some methods perform
poorly (MAE > 1), such as Adaboost, Linear, L1, L2 (not
on Fig. as it has MAE of 2.55), Elastic Net and ARIMA.
SVR and polynomial perform better having MAE lower than
1. Ensemble methods and LSTM have excellent performance
ranging from 0.45 to 0.29 MAE. Finally, k-NN and the other
NNs show outstanding results reaching MAE values from 0.26
to only 0.15. Notably, Fig. 5d shows that most NNs need
more training time than ensemble methods to reach these MAE
values. Surprisingly, FNN, CNN-LSTM and CNN have similar
training demands with the ensemble methods, but outperform
them in terms of MAE. Importantly, these results should
be studied when also considering the model configuration
in Tables I, II. Generally, we configure the majority of the
models in the most resource-efficient manner. For instance,
we stop the LSTM training at approx. 22 minutes to save
training resources since we do not observe large improvements
afterwards. However, if we are willing to prioritize MAE, we
could let the training continue. In some cases, we opted for the
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Fig. 6: CQI forecasting performance on Testbed.

latter option to observe the results. For example, we could stop
the Bi-LSTM’s training earlier as it reached a sufficient MAE
lower than 0.5. Instead, we let the training continue for up to
1 hour and hence, the model reaches an outstanding MAE of
only 0.16. GRU’s training could also be stopped earlier with
an accuracy cost. This way, we present the impact of different
decisions in the MAE vs. training time trade-off.

Based on our results, we recommend using NNs for this
problem as they are more resilient to noise and reach lower
MAE values. As shown in Table I, we recommend using
at least two hidden layers in NNs to capture non-linear
patterns in data. We propose a combination of a Convolutional
(CNN) with a Recurrent Neural Network (RNN), such as
CNN-LSTM, as the most efficient solution. This forms an
Encoder-Decoder architecture, with the CNN implementing
the feature extraction, noise and dimensionality reduction
procedures, while the LSTM finds the patterns using memory
components. This way, a robust model with superb accuracy
and training performance is built. Regarding the ensemble
models, LightGBM and CatBoost are very promising solutions
as they have great accuracy with little training time.

B. Experimental Evaluation

On the testbed, several models are evaluated on a specific
car scenario to have a common ground for evaluation. At each
experiment, one model is integrated into the AI unit to forecast
the car’s CQI values. Each model is trained in the complete
training set with the data of the augmented scenarios (45339
samples). Moreover, the car scenario used on the testbed is the
basic non-augmented one that was excluded from the training
data. Fig. 6 presents the real-time CQI forecasting (ŷi) of
the models, compared with the labels (yi) during the exper-
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iments, in order to better understand the impact of different
MAE values. Moreover, Fig. 7 demonstrates the experienced
(a) throughput and (b) jitter during the experiments. More
specifically, Fig. 7a and 7b show the default steering, where
the AI unit is not employed, steering the downlink traffic
only via the LTE DU. Hence, the WIFI link is not exploited
leading to poor end-user QoE in a major part of the route.
In contrast, the AI unit correctly identifies the CQI patterns
in all the other experiments (Fig. 7) and optimally steers the
traffic via the DUs. Specifically, it predicts the two moments
when the traffic needs to be redirected to the other DU. The
first moment is at approx. 160 seconds when the LTE link’s
quality begins to deteriorate. Then the AI unit redirects the
traffic on time towards the WIFI DU preventing the QoE drop.
Moreover, the unit predicts that at approx. 550 seconds the
LTE quality starts to increase and hence, redirects the traffic
back to the LTE DU. This way, throughput is maximized and
jitter is minimized. Overall, the selected algorithms achieve
great results at matching CQI patterns and guiding the AI-
unit to maximize the user QoE.
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Fig. 7: Experimental validation for traffic steering
V. CONCLUSION

In this work, we present a novel traffic-steering approach
and attempt to shed light on which ML approach yields the

best results in forecasting future QoS metrics of the end users.
We evaluated a total of 22 different ML models, towards
determining which one performs better in terms of accuracy,
training time and convergence speed. Given their performance,
we conclude that CNN-LSTMs seem to provide a good-
tradeoff between the produced errors and training time needed,
though other approaches can yield results with similar MAE
but high computing times (e.g. stacked LSTMs) or higher
MAE but with significantly less training times (e.g. Forest-
based methods). The results are applied in the traffic steering
case through a novel architecture, that is able to enhance the
total perceived QoE for multi-homed end-users. The tools and
data contributions of this paper are also available in [17].
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